<u>Answer:</u> False
<u>Explanation / Counterexample:</u> Two lines in a 3-dimensional space can lie in two different planes.
Answer:
C 58
Step-by-step explanation:
Answer:
Step-by-step explanation:
To get you needed to divide the numerator and denominator by 3.
31 degrees, 31 degrees, 118 degrees
Step-by-step explanation:
Step 1 :
Let x be the measure of 2 angles of the given isosceles triangle with same measure
Let y be the measure of 3rd angle
So we have x + x + y = 180
Step 2 :
Given that the measure of 3rd angle of triangle is 25° more than three times the measure of either of the other two angles
So we have , y = 3 x + 25
Step 3:
Substituting for y in the first equation we have,
x + x + 3 x + 25 = 180
=> 5 x + 25 = 180
=> 5 x = 180-25 = 155
=> x = 155/5 = 31
Hence the 2 angles of the triangle are 31 degrees.
Step 4:
we have y = 3 x + 25
=> y = 3 * 31 + 25 = 118
Hence the 3rd angle of given triangle is 118 degrees