Answer:
<em> The 90% confidence interval for the population proportion is</em>
<em>(0.10872, 0.19128)</em>
Step-by-step explanation:
<u><em>Explanation:</em></u>-
<u><em>Step(i)</em></u>:-
Given data A random sample of 200 e-mail messages was selected. Thirty of the messages were not business related
Given random sample size 'n' = 200
Given Thirty of the messages were not business related
let 'x' = 30
<em>Probability of the messages were not business related or proportion</em>
<em></em>
<em></em>
<u><em>Step(ii)</em></u><em>:-</em>
<em>The 90% confidence interval for the population proportion is</em>

Level of significance ∝ = 0.90 or 0.10
The critical value Z₀.₁₀ = 1.645
<em>The 90% confidence interval for the population proportion is</em>

on calculation, we get
(0.15 - 0.04128 , (0.15 + 0.04128)
(0.10872, 0.19128)
<u><em> Conclusion:-</em></u>
<em> The 90% confidence interval for the population proportion is</em>
<em>(0.10872, 0.19128)</em>
<em></em>