<em>x</em>/<em>r</em> + <em>x</em>/<em>w</em> + <em>x</em>/<em>t</em> = 1
<em>x</em> (1/<em>r</em> + 1/<em>w</em> + 1/<em>t</em>) = 1
<em>x</em> = 1 / (1/<em>r</em> + 1/<em>w</em> + 1/<em>t</em>)
To make the solution a bit cleaner, multiply through the numerator and denominator by the LCM of each fraction's denominator, <em>rwt</em> :
<em>x</em> = 1 / (1/<em>r</em> + 1/<em>w</em> + 1/<em>t</em>) • <em>rwt</em> / <em>rwt</em>
<em>x</em> = <em>rwt</em> / (<em>rwt</em>/<em>r</em> + <em>rwt</em>/<em>w</em> + <em>rwt</em>/<em>t</em>)
<em>x</em> = <em>rwt</em> / (<em>wt</em> + <em>rt</em> + <em>rw</em>)
Answer:
g(x)=x-3
Step-by-step explanation:
Answer:
The vertex of this graph is (5, 3)
Step-by-step explanation:
In order to find the vertex of any graph in vertex form, we need to look at the base form.
f(x) = a|x - h| + k
The point (h, k) is the vertex. You can see that 5 lines up with the h term and 3 lines up with the k term. This gives us a vertex of (5, 3)
Answer:
Step-by-step explanation: You put a line in the middle and it makes a triangle
Answer: 3 (C-7)+2(3c+4)
Step-by-step explanation: Given
3(c - 7) + 2(3c + 4) ← distribute both parenthesis
= 3c - 21 + 6c + 8 ← collect like terms
= 9c - 13