What do you mean by "solve this?" Until you set f(x) = to some constant number, you don't have an equation and thus can't expect to find solutions.
Why don't we take <span>3x^2-18x+27 and set it = to 0, and only then try to solve this equation?
</span><span>3x^2-18x+27 = 0. Dividing both sides by 3, we get x^2 - 6x + 9= 0, which can be factored as
(x-3)^2 = 0. Taking the sqrt of both sides, we get x-3 = 0. Actually, there are 2 roots: 3 and 3. Again, this statement is true only if we set </span><span>3x^2-18x+27 = to 0.</span>
Answer:
-120
Step-by-step explanation:
The answer is Y=x+2 hope that’s right
Division. You can divide 64 by 3 to find q.
We can apply the following properties of radicals:
![\begin{gathered} \sqrt[n]{ab}=\sqrt[n]{a}\cdot\sqrt[n]{b}\Rightarrow\text{ Product property} \\ \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}\Rightarrow\text{ Quotient property} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Csqrt%5Bn%5D%7Bab%7D%3D%5Csqrt%5Bn%5D%7Ba%7D%5Ccdot%5Csqrt%5Bn%5D%7Bb%7D%5CRightarrow%5Ctext%7B%20Product%20property%7D%20%5C%5C%20%5Csqrt%5Bn%5D%7B%5Cfrac%7Ba%7D%7Bb%7D%7D%3D%5Cfrac%7B%5Csqrt%5Bn%5D%7Ba%7D%7D%7B%5Csqrt%5Bn%5D%7Bb%7D%7D%5CRightarrow%5Ctext%7B%20Quotient%20property%7D%20%5Cend%7Bgathered%7D)
Then, we have:
![\begin{gathered} \text{ Apply the product property} \\ \sqrt[]{\frac{7}{8}}\cdot\sqrt[]{\frac{7}{18}}=\sqrt[]{\frac{7}{8}\cdot\frac{7}{18}} \\ \sqrt[]{\frac{7}{8}}\cdot\sqrt[]{\frac{7}{18}}=\sqrt[]{\frac{7\cdot7}{8\cdot18}} \\ \sqrt[]{\frac{7}{8}}\cdot\sqrt[]{\frac{7}{18}}=\sqrt[]{\frac{49}{144}} \\ \text{ Apply the quotient property} \\ \sqrt[]{\frac{7}{8}}\cdot\sqrt[]{\frac{7}{18}}=\frac{\sqrt[]{49}}{\sqrt[]{144}} \\ \sqrt[]{\frac{7}{8}}\cdot\sqrt[]{\frac{7}{18}}=\frac{7}{12} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ctext%7B%20Apply%20the%20product%20property%7D%20%5C%5C%20%5Csqrt%5B%5D%7B%5Cfrac%7B7%7D%7B8%7D%7D%5Ccdot%5Csqrt%5B%5D%7B%5Cfrac%7B7%7D%7B18%7D%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B7%7D%7B8%7D%5Ccdot%5Cfrac%7B7%7D%7B18%7D%7D%20%5C%5C%20%5Csqrt%5B%5D%7B%5Cfrac%7B7%7D%7B8%7D%7D%5Ccdot%5Csqrt%5B%5D%7B%5Cfrac%7B7%7D%7B18%7D%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B7%5Ccdot7%7D%7B8%5Ccdot18%7D%7D%20%5C%5C%20%5Csqrt%5B%5D%7B%5Cfrac%7B7%7D%7B8%7D%7D%5Ccdot%5Csqrt%5B%5D%7B%5Cfrac%7B7%7D%7B18%7D%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B49%7D%7B144%7D%7D%20%5C%5C%20%5Ctext%7B%20Apply%20the%20quotient%20property%7D%20%5C%5C%20%5Csqrt%5B%5D%7B%5Cfrac%7B7%7D%7B8%7D%7D%5Ccdot%5Csqrt%5B%5D%7B%5Cfrac%7B7%7D%7B18%7D%7D%3D%5Cfrac%7B%5Csqrt%5B%5D%7B49%7D%7D%7B%5Csqrt%5B%5D%7B144%7D%7D%20%5C%5C%20%5Csqrt%5B%5D%7B%5Cfrac%7B7%7D%7B8%7D%7D%5Ccdot%5Csqrt%5B%5D%7B%5Cfrac%7B7%7D%7B18%7D%7D%3D%5Cfrac%7B7%7D%7B12%7D%20%5Cend%7Bgathered%7D)
Therefore, the choice that is equivalent to the given product is: