1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
julia-pushkina [17]
3 years ago
14

Let f(x) = 3x - 10. Find the value of f(-3).

Mathematics
1 answer:
laiz [17]3 years ago
6 0
Easy, sub -3 for x
f(-3)=3(-3)-10
f(-3)=-9-10
f(-3)=-19

the value of f(-3) is -19
You might be interested in
.
Zepler [3.9K]
It took 12 days for all the 60 gallons of water to leak out of the barrel. If you divide 60 by 5 you will get 12.
4 0
2 years ago
Read 2 more answers
I need some help with this
lapo4ka [179]

Answer:

A. 1

Step-by-step explanation:

Since it's g(-4), we have to use the first option because that means that x is equal to less than -4.

3√x + 5

3 √-4 + 5

= 1

4 0
3 years ago
Whichhhhh<br> oneeeeeeeeeeeee
Nostrana [21]

Answer:

A

Step-by-step explanation:

the slope of A is 1/2 which is greater than that of B

6 0
2 years ago
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
In Δ,∠=70°,∠=50° ∠ . <br> ℎ ∠.
AveGali [126]

Answer:

100°

Step-by-step explanation:

A triangle is a polygon shape with three sides. Triangles are of different types such as obtuse, scalene, equilateral, isosceles etc.

In triangle ABC:

70° + 50° + ∠C = 180° (sum of angles in a triangle)

120 + ∠C = 180

∠C = 180 - 120

∠C = 60°

Since ∠C is bisected into ∠ACD and ∠BCD, hence:

∠ACD = ∠BCD = ∠C / 2

∠ACD = ∠BCD = 60 / 2

∠ACD = ∠BCD = 30°

In triangle ACD:

∠A + ∠ACD + ∠ADC = 180° (sum of angles in a triangle)

50 + 30 + ∠ADC = 180

∠ADC + 80 = 180

∠ADC = 100°

6 0
3 years ago
Other questions:
  • A University of Florida student earns $15 per day delivering advertising brochures door-to-door, plus 75¢ for each person he int
    10·1 answer
  • What is the slope of the line in the graph?
    7·2 answers
  • Find the distance between X(2,4) and Y(5,7)
    11·1 answer
  • 1. (8-2)+18×6= 2. (15+29-4)×4= 3. (13+5)×(13-5)= show steps please
    7·1 answer
  • Which pair of coordinate points has a slope of -2?
    15·1 answer
  • The area of a square is 54 cm. What
    14·1 answer
  • What is 6x7 i give brainlest
    6·2 answers
  • The spherical bottle has a conical shaped lid with a diameter of 5cm and a height of 4.5cm. Given this information, calculate th
    8·1 answer
  • Find the missing side of the triangle <br>​
    12·1 answer
  • How to round 831,756 nears hundred thousand
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!