Answer:

Step-by-step explanation:





Answer:
the answer is B
Step-by-step explanation:
Answer:
h(8q²-2q) = 56q² -10q
k(2q²+3q) = 16q² +31q
Step-by-step explanation:
1. Replace x in the function definition with the function's argument, then simplify.
h(x) = 7x +4q
h(8q² -2q) = 7(8q² -2q) +4q = 56q² -14q +4q = 56q² -10q
__
2. Same as the first problem.
k(x) = 8x +7q
k(2q² +3q) = 8(2q² +3q) +7q = 16q² +24q +7q = 16q² +31q
_____
Comment on the problem
In each case, the function definition says the function is not a function of q; it is only a function of x. It is h(x), not h(x, q). Thus the "q" in the function definition should be considered to be a literal not to be affected by any value x may have. It could be considered another way to write z, for example. In that case, the function would evaluate to ...
h(8q² -2q) = 56q² -14q +4z
and replacing q with some value (say, 2) would give 196+4z, a value that still has z as a separate entity.
In short, I believe the offered answers are misleading with respect to how you would treat function definitions in the real world.
Answer:
<em>The ball's speed will be 10 m/s at t=1.22 seconds</em>
Step-by-step explanation:
The vertical motion of an object is controlled by the force of gravity. This means that there is a non-zero net force acting on the object that makes it accelerate downwards.
If the object is thrown upwards at speed vo, its speed at time t is:

Where g is the acceleration of gravity 
Our ball is thrown upwards with v0=22 m/s. We need to calculate the time when its speed is vf=10 m/s.
Solving the above equation for t:

Substituting:

t=1.22 seconds
The ball's speed will be 10 m/s at t=1.22 seconds
Answer:
see explanation
Step-by-step explanation:
look at the explanation& answer photo