Answer:
Angle A is 37 degrees, Angle B is 82 degrees, Angle C is 61 degrees
Step-by-step explanation:
Exterior angles are the supplement of interior angles, so subtract 143 from 180 to find Angle A.
180 - 143 = 37
All angles add up to 180.
37 + 61 = 98
180 - 98 = 82
Angle B is 82 degrees.
Hope this helped. :)
Answer:
i believe the answer is 2,340
Step-by-step explanation:
Answer:
y = 1/3x - 2
Step-by-step explanation:
We are asked to find the equation of a line with two points
Step1: find the slope
m = (y_2 - y_1)/(x_2 - x_1)
( 0 , -2) (6 , 0)
x_1 = 0
y_1 = -2
x_2 = 6
y_2 = 0
Insert the values
m = ( 0 - (-2)/ (6 - 0)
m = ( 0 + 2)/(6 - 0)
m = 2/6
m = (2/2)/(6/2)
m = 1/3
Step 2 : substitute m into the equation of line
y = mx + c
y = intercept y
m = slope
x = intercept x
c = intercept
y = 1/3x + c
Step 3: sub any of the two points
Let's pick ( 6 ,0)
x = 6
y = 0
Insert the values into
y = 1/3x + c
0 = 1/3(6) + c
0 = 1*6/3 + c
0 = 6/3 + c
0 = 2 + c
c = 0 - 2
c = -2
Sub c = -2
y = 1/3x - 2
The equation of the line is
y = 1/3x - 2
Answer:
29.78 feet
Step-by-step explanation:
Answer:
A), B) and D) are true
Step-by-step explanation:
A) We can prove it as follows:

B) When you compute the product Ax, the i-th component is the matrix of the i-th column of A with x, denote this by Ai x. Then, we have that
. Now, the colums of A are orthonormal so we have that (Ai x)^2=x_i^2. Then
.
C) Consider
. This set is orthogonal because
, but S is not orthonormal because the norm of (0,2) is 2≠1.
D) Let A be an orthogonal matrix in
. Then the columns of A form an orthonormal set. We have that
. To see this, note than the component
of the product
is the dot product of the i-th row of
and the jth row of
. But the i-th row of
is equal to the i-th column of
. If i≠j, this product is equal to 0 (orthogonality) and if i=j this product is equal to 1 (the columns are unit vectors), then
E) Consider S={e_1,0}. S is orthogonal but is not linearly independent, because 0∈S.
In fact, every orthogonal set in R^n without zero vectors is linearly independent. Take a orthogonal set
and suppose that there are coefficients a_i such that
. For any i, take the dot product with u_i in both sides of the equation. All product are zero except u_i·u_i=||u_i||. Then
then
.