29 degrees. You can just add 12 and 17 to find this, since the 12 is negative
keeping in mind that perpendicular lines have negative reciprocal slopes, hmmm what's the slope of the equation above anyway?
![\bf y = \cfrac{2}{3}x\implies y = \stackrel{\stackrel{m}{\downarrow }}{\cfrac{2}{3}}x+0\qquad \impliedby \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20y%20%3D%20%5Ccfrac%7B2%7D%7B3%7Dx%5Cimplies%20y%20%3D%20%5Cstackrel%7B%5Cstackrel%7Bm%7D%7B%5Cdownarrow%20%7D%7D%7B%5Ccfrac%7B2%7D%7B3%7D%7Dx%2B0%5Cqquad%20%5Cimpliedby%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20slope-intercept~form%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y%3D%5Cunderset%7By-intercept%7D%7B%5Cstackrel%7Bslope%5Cqquad%20%7D%7B%5Cstackrel%7B%5Cdownarrow%20%7D%7Bm%7Dx%2B%5Cunderset%7B%5Cuparrow%20%7D%7Bb%7D%7D%7D%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

so we're really looking for the equation of a line whose slope is -3/2 and runs through (0,0).

70º
It's a supplementary angle so 180º - 110º
16 times the quantity of numbers, in this case 5, which = 80, then subtract each number, 80-20-20-19-13=8. X should = 8
Answer: 1140
Step-by-step explanation: Sorry if its wrong