Answer:
r = 23
Step-by-step explanation:
m = (y2 - y1)/(x2 - x1)
5 = (3 - r)/(-8 - (-4))
5 = (3 - r)/(-8 + 4)
3 - r = 5 × -4
3 - r = -20
-r = -23
r = 23
Answer:
387
Step-by-step explanation:
Formula: 

Answer: 46.90mins
Step-by-step explanation:
The given data:
The diameter of the balloon = 55 feet
The rate of increase of the radius of the balloon when inflated = 1.5 feet/min.
Solution:
dr/dt = 1.5 feet per minute = 1.5 ft/min
V = 4/3·π·r³
The maximum volume of the balloon
= 4/3 × 3.14 × 55³
= 696556.67 ft³
When the volume 2/3 the maximum volume
= 2/3 × 696556.67 ft³
= 464371.11 ft³
The radius, r₂ at the point is
= 4/3·π·r₂³
= 464371.11 ft³
r₂³ = 464371.11 ft³ × 3/4
= 348278.33 ft³
348278.333333
r₂ = ∛(348278.33 ft³) ≈ 70.36 ft
The time for the radius to increase to the above length = Length/(Rate of increase of length of the radius)
The time for the radius to increase to the
above length
Time taken for the radius to increase the length.
= is 70.369 ft/(1.5 ft/min)
= 46.90 minutes
46.90mins is the time taken to inflate the balloon.
Your answer would be 1...
PV = P(1 - (1 + r)^-n) / r; where P is the periodic withdrawal = $100,000; r = rate = 5% = 0.05; n = number of periods = 20 years.
PV = 100000(1 - (1 + 0.05)^-20) / 0.05 = 100000(1 - 1.05^-20) / 0.05 = 100000(1 - 0.3769) / 0.05 = 100000(0.6231) / 0.05 = 100000(12.4622) = 1,246,221 ≈ $1,250,000