The answer is D.
Hope I helped
Answer:
Step-by-step explanation:
By definition of Laplace transform we have
L{f(t)} = ![L{{f(t)}}=\int_{0}^{\infty }e^{-st}f(t)dt\\\\Given\\f(t)=7t^{3}\\\\\therefore L[7t^{3}]=\int_{0}^{\infty }e^{-st}7t^{3}dt\\\\](https://tex.z-dn.net/?f=L%7B%7Bf%28t%29%7D%7D%3D%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7Df%28t%29dt%5C%5C%5C%5CGiven%5C%5Cf%28t%29%3D7t%5E%7B3%7D%5C%5C%5C%5C%5Ctherefore%20L%5B7t%5E%7B3%7D%5D%3D%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7D7t%5E%7B3%7Ddt%5C%5C%5C%5C)
Now to solve the integral on the right hand side we shall use Integration by parts Taking
as first function thus we have
![\int_{0}^{\infty }e^{-st}7t^{3}dt=7\int_{0}^{\infty }e^{-st}t^{3}dt\\\\= [t^3\int e^{-st} ]_{0}^{\infty}-\int_{0}^{\infty }[(3t^2)\int e^{-st}dt]dt\\\\=0-\int_{0}^{\infty }\frac{3t^{2}}{-s}e^{-st}dt\\\\=\int_{0}^{\infty }\frac{3t^{2}}{s}e^{-st}dt\\\\](https://tex.z-dn.net/?f=%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7D7t%5E%7B3%7Ddt%3D7%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7Dt%5E%7B3%7Ddt%5C%5C%5C%5C%3D%20%5Bt%5E3%5Cint%20e%5E%7B-st%7D%20%5D_%7B0%7D%5E%7B%5Cinfty%7D-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5B%283t%5E2%29%5Cint%20e%5E%7B-st%7Ddt%5Ddt%5C%5C%5C%5C%3D0-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B3t%5E%7B2%7D%7D%7B-s%7De%5E%7B-st%7Ddt%5C%5C%5C%5C%3D%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B3t%5E%7B2%7D%7D%7Bs%7De%5E%7B-st%7Ddt%5C%5C%5C%5C)
Again repeating the same procedure we get
![=0-\int_{0}^{\infty }\frac{3t^{2}}{-s}e^{-st}dt\\\\=\int_{0}^{\infty }\frac{3t^{2}}{s}e^{-st}dt\\\\\int_{0}^{\infty }\frac{3t^{2}}{s}e^{-st}dt= \frac{3}{s}[t^2\int e^{-st} ]_{0}^{\infty}-\int_{0}^{\infty }[(t^2)\int e^{-st}dt]dt\\\\=\frac{3}{s}[0-\int_{0}^{\infty }\frac{2t^{1}}{-s}e^{-st}dt]\\\\=\frac{3\times 2}{s^{2}}[\int_{0}^{\infty }te^{-st}dt]\\\\](https://tex.z-dn.net/?f=%3D0-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B3t%5E%7B2%7D%7D%7B-s%7De%5E%7B-st%7Ddt%5C%5C%5C%5C%3D%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B3t%5E%7B2%7D%7D%7Bs%7De%5E%7B-st%7Ddt%5C%5C%5C%5C%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B3t%5E%7B2%7D%7D%7Bs%7De%5E%7B-st%7Ddt%3D%20%5Cfrac%7B3%7D%7Bs%7D%5Bt%5E2%5Cint%20e%5E%7B-st%7D%20%5D_%7B0%7D%5E%7B%5Cinfty%7D-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5B%28t%5E2%29%5Cint%20e%5E%7B-st%7Ddt%5Ddt%5C%5C%5C%5C%3D%5Cfrac%7B3%7D%7Bs%7D%5B0-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B2t%5E%7B1%7D%7D%7B-s%7De%5E%7B-st%7Ddt%5D%5C%5C%5C%5C%3D%5Cfrac%7B3%5Ctimes%202%7D%7Bs%5E%7B2%7D%7D%5B%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7Dte%5E%7B-st%7Ddt%5D%5C%5C%5C%5C)
Again repeating the same procedure we get
![\frac{3\times 2}{s^2}[\int_{0}^{\infty }te^{-st}dt]= \frac{3\times 2}{s^{2}}[t\int e^{-st} ]_{0}^{\infty}-\int_{0}^{\infty }[(t)\int e^{-st}dt]dt\\\\=\frac{3\times 2}{s^2}[0-\int_{0}^{\infty }\frac{1}{-s}e^{-st}dt]\\\\=\frac{3\times 2}{s^{3}}[\int_{0}^{\infty }e^{-st}dt]\\\\](https://tex.z-dn.net/?f=%5Cfrac%7B3%5Ctimes%202%7D%7Bs%5E2%7D%5B%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7Dte%5E%7B-st%7Ddt%5D%3D%20%5Cfrac%7B3%5Ctimes%202%7D%7Bs%5E%7B2%7D%7D%5Bt%5Cint%20e%5E%7B-st%7D%20%5D_%7B0%7D%5E%7B%5Cinfty%7D-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5B%28t%29%5Cint%20e%5E%7B-st%7Ddt%5Ddt%5C%5C%5C%5C%3D%5Cfrac%7B3%5Ctimes%202%7D%7Bs%5E2%7D%5B0-%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7D%5Cfrac%7B1%7D%7B-s%7De%5E%7B-st%7Ddt%5D%5C%5C%5C%5C%3D%5Cfrac%7B3%5Ctimes%202%7D%7Bs%5E%7B3%7D%7D%5B%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7Ddt%5D%5C%5C%5C%5C)
Now solving this integral we have
![\int_{0}^{\infty }e^{-st}dt=\frac{1}{-s}[\frac{1}{e^\infty }-\frac{1}{1}]\\\\\int_{0}^{\infty }e^{-st}dt=\frac{1}{s}](https://tex.z-dn.net/?f=%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7Ddt%3D%5Cfrac%7B1%7D%7B-s%7D%5B%5Cfrac%7B1%7D%7Be%5E%5Cinfty%20%7D-%5Cfrac%7B1%7D%7B1%7D%5D%5C%5C%5C%5C%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-st%7Ddt%3D%5Cfrac%7B1%7D%7Bs%7D)
Thus we have
![L[7t^{3}]=\frac{7\times 3\times 2}{s^4}](https://tex.z-dn.net/?f=L%5B7t%5E%7B3%7D%5D%3D%5Cfrac%7B7%5Ctimes%203%5Ctimes%202%7D%7Bs%5E4%7D)
where s is any complex parameter
Answer:
744 in³
Step-by-step explanation:
Since you are filling the larger box with both rectangular prism and Styrofoam peanuts, you need to find the overall volume of the larger box and subtract the volume of the glass box to find the amount of space that the Styrofoam peanuts need to take up.
Volume (prism) = Bh, where B = area of the base, h = height
Larger Box: V = 10 x 10 x 15 = 1500 in³
Glass Box: V = 7 x 9 x 12 = 756 in³
1500 - 756 = 744 in³ of Styrofoam peanuts
Answer:
A=75
B=60
C=45
Step-by-step explanation:
5+4+3=12
every triangle is equal to 180 so we divide
180/12=15
then we multiply each angle by 15
5*15
4*15
and 3*15
don't forget to check your work by adding the answers together to get 180
Answer:
7/11 = 0.6363...
Step-by-step explanation:
7 + 4 = 11
probability of winning: 7/11 = 0.6363...