Answer:
a) M = {0 , 1 , 4 , 9 , 16 , 25 , 36 , 49 , 64 , 81}
N = {2 , 4, 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 , 22 , 24 , 26 , 28}
b) M ∩ N = {4 , 16 }
M ∪ N = {0 , 1 , 2 , 4 , 6 , 8 , 9 , 10 , 12 , 14 , 16 , 18 , 20 , 22 , 24 , 25 , 26 , 28 ,
36 , 49 , 64 , 81}
a) X = {e , i , g , h , t , y}
W = {e , n , s , t , v , y}
b) X ∪ W = {e , i , g , h , n , s , t , v , y}
X ∩ W = {e , t , y}
Step-by-step explanation:
* Lets explain how to solve the problem
- We can find a square number by multiply the number by itself
a)
- M is the set of all square integers that are less than 100
∵ The integers from -9 to 9 has square less than 100
∴ M = {0 , 1 , 4 , 9 , 16 , 25 , 36 , 49 , 64 , 81}
- N is the set of all positive even numbers that are under 30
∵ Even number any number divisible by 2
∵ They are positive numbers
∴ They start with 2 because zero is not a positive or negative
∴ N = {2 , 4, 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 , 22 , 24 , 26 , 28}
b)
- M ∩ N means the common numbers between set M and set N
∵ The common elements of M ∩ N are square and even less
than 30
∴ M ∩ N = {4 , 16 }
- M ∪ N means all the elements in M and N without reputation
∴ M ∪ N = {0 , 1 , 2 , 4 , 6 , 8 , 9 , 10 , 12 , 14 , 16 , 18 , 20 , 22 , 24 , 25 ,
26 , 28 , 36 , 49 , 64 , 81}
a)
- X is the set of all letters of the word eighty
∵ The letters of word eighty are e i g h t y
∴ X = {e , i , g , h , t , y}
- W be the set of all letters of the word seventy
∵ The letters of word seventy are s e v e n t y
∵ We don't repeat any element in the set
∴ W = {e , n , s , t , v , y}
b)
- X ∪ W means all the elements in X and W without reputation
∴ X ∪ W = {e , i , g , h , n , s , t , v , y}
- X ∩ W means the common elements between set X and set W
∵ The common letters between X and W are e , t , y
∴ X ∩ W = {e , t , y}