Answer:
47+ y = 180 (linear pair)
y = 133
Answer:
x<-25
Step-by-step explanation:
Answer:
Do you still need help?
Step-by-step explanation:
Answer:
Step-by-step explanation:
This is a quadratic expression. Use the quadratic formula to find the roots, and then once you have the roots, write the corresponding factors.
The coefficients of this quadratic expression are a = 7, b = 5 and c = -3
The discriminant is b^2 - 4ac, or 5^ - 4(7)(-3), or 25 + 84 = 109. Because this is positive, we know that the expression has two unequal, real roots.
Using the quadratic formula, we now find these roots:
-b ± √(discriminant)
x = -------------------------------- which here is:
2a
-5 ± √109
x = -----------------
14
The factors can be found from these two roots. The first one is
-5 - √109 5 + √109
(x - ---------------- ) = (x + ---------------- )
14 14
and the second is
5 - √109
(x + ---------------- )
14
Answer: The velocity of the ball is 108.8 ft/s downwards.
Step-by-step explanation:
When the ball is dropped, the only force acting on the ball will be the gravitational force. Then the acceleration of the ball will be the gravitational acceleration, that is something like:
g = 32 ft/s^2
To get the velocity equation we need to integrate over time, to get:
v(t) = (32ft/s^2)*t + v0
where v0 is the initial velocity of the ball. (t = 0s is when the ball is dropped)
Because it is dropped, the initial velocity is equal to zero, then we get:
v(t) = (32ft/s^2)*t
Which is the same equation that we can see in the hint.
Now we want to find the velocity 3.4 seconds after the ball is dropped, then we just replace t by 3.4s, then we get:
v(3.4s) = (32ft/s^2)*3.4s = 108.8 ft/s
The velocity of the ball is 108.8 ft/s downwards.