A). The answer is x = -4
Work:
3 - x = 11 + x
3 - x - 3 = 11 + x - 3
-x = x + 8
-x - x = x + 8 - x
-2x = 8
-2x/-2 = 8/-2
Answer: x = -4
B). The answer is x = 6
Work:
2x + 7 = 3x + 1
2x + 7 = 3x + 1 - 7
2x = 3x - 6
2x - 3x = 3x - 6 - 3x
-x = -6
-x/-1 = -6/-1
Answer x = 6
C). Answer: x = 4/3
Work:
8 - 2x = 4 + x
8 - 2x - 8 = 4 + x - 8
-2x = x - 4
-2x - x = x - 4 - x
-3x = -4
-3x/-3 = -4/-3
Answer: x = 4/3
D). Answer: x = 2
Work:
4x + 2 = 2x + 6
4x + 2 - 2 = 2x + 6 - 2
4x = 2x + 4
4x - 2x = 2x + 4 - 2x
2x = 4
2x/2 = 4/2
Answer: x = 2
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
Select a few
x
x
values, and plug them into the equation to find the corresponding
y
y
values. The
x
x
values should be selected around the vertex.
Tap for more steps...
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
Graph the parabola using its properties and the selected points.
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
f
(
x
)
=
8
1
−
x
2
?
?
f(x)=81-x2??
f
(
x
)
=
81
−
x
2
x
?
f(x)=81-x2x?
f
(
x
)
=
81
−
x
2
x
2
?
f(x)=81-x2x2?
f
(
x
)
=
81
−
x
2
x
3
?
f(x)=81-x2x3?
(
)
|
[
]
√
≥
π
7
8
9
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
Select a few
x
x
values, and plug them into the equation to find the corresponding
y
y
values. The
x
x
values should be selected around the vertex.
Tap for more steps...
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
Graph the parabola using its properties and the selected points.
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
f
(
x
)
=
8
1
−
x
2
?
?
f(x)=81-x2??
f
(
x
)
=
81
−
x
2
x
?
f(x)=81-x2x?
f
(
x
)
=
81
−
x
2
x
2
?
f(x)=81-x2x2?
f
(
x
)
=
81
−
x
2
x
3
?
f(x)=81-x2x3?
(
)
|
[
]
√
≥
π
7
8
9
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
Select a few
x
x
values, and plug them into the equation to find the corresponding
y
y
values. The
x
x
values should be selected around the vertex.
Tap for more steps...
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
Graph the parabola using its properties and the selected points.
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
f
(
x
)
=
8
1
−
x
2
?
?
f(x)=81-x2??
f
(
x
)
=
81
−
x
2
x
?
f(x)=81-x2x?
f
(
x
)
=
81
−
x
2
x
2
?
f(x)=81-x2x2?
f
(
x
)
=
81
−
x
2
x
3
?
f(x)=81-x2x3?
(
)
|
[
]
√
≥
π
7
8
9
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
Select a few
x
x
values, and plug them into the equation to find the corresponding
y
y
values. The
x
x
values should be selected around the vertex.
Tap for more steps...
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
Graph the parabola using its properties and the selected points.
Direction: Opens Down
Vertex:
(
0
,
81
)
(0,81)
Focus:
(
0
,
323
4
)
(0,3234)
Axis of Symmetry:
x
=
0
x=0
Directrix:
y
=
325
4
y=3254
x
y
−
2
77
−
1
80
0
81
1
80
2
77
xy-277-180081180277
f
(
x
)
=
8
1
−
x
2
?
?
f(x)=81-x2??
f
(
x
)
=
81
−
x
2
x
?
f(x)=81-x2x?
f
(
x
)
=
81
−
x
2
x
2
?
f(x)=81-x2x2?
f
(
x
)
=
81
−
x
2
x
3
?
f(x)=81-x2x3?
(
)
|
[
]
√
≥
π
7
8
9
vvvvv
Answer:
B) 5/4
Step-by-step explanation:
(2,3)....x1 =2,y1=3
(6,8)....x2=6,y2=8
Slope=(y2-y1) /(x2-x1)
Slope =(8-3)/(6-2)
Slope =5/4
Answer:
139
Step-by-step explanation:
First we need to find diameter 132/3.14=42 rounded
Then we halve it to find radius 42/2=21
Formula for area is radius x radius x 3.14
21 x 21 = 441 x 3.14 = 138.74 round up is 139