They tend to be bigger and stronger
Answer:
enable capillarity
Explanation:
It is well known that water tends to adhere to the walls of the vessel in which it is contained. This is due to the force of adhesion which is defined as the force of attraction between unlike molecules. Cohesion is defined as the force of attraction between like molecules. In the case of a plant, cohesion of water molecules in the xylem vessels prevents the water column from breaking. The forces of adhesion, surface tension and cohesion are the basis of capillarity,that is, the rise of liquids in capillary tubes.
The answer is diffusion.
The most important mechanism that enables oxygen and carbon dioxide (but as well other small molecules such as glucose, amino acids, wastes) across capillary walls is diffusion. Diffusion is a net movement of molecules through some barrier from an area of high concentration to the area of low concentration. When blood rich in oxygen reaches capillaries close to the cell, now there <span>is </span>more oxygen in the capillaries than in the cells and by diffusion, oxygen will pass capillary walls and enter the cell. Since blood in capillaries lacks in carbon dioxide, it will easily leave the cells and enter the blood. It should be taken into consideration that capillary walls may be fenestrated, continuous, and discontinuous which can affect movement through them.
the answer is radiation
Radiation is the emission and propagation of energy. A substance does not need to be radioactive in order to emit radiation because radiation encompasses all forms of energy, not just those produced by radioactive decay. However, all radioactive materials do emit radiation.
Answer:
Wish I could be of help but I like your peppa pig sticker :)