Answer:
feeefewf
Step-by-step explanation:
fwevf
Answer:
Step-by-step explanation:
total cost = c
students = s
cost = 7
c = s*7
independent is s
dependent is c
I'm not sure if this is the easiest way of doing this, but it surely work.
Let the base of the triangle be AB, and let CH be the height. Just for reference, we have

Moreover, let CH=y and BC=z
Now, AHC, CHB and ABC are all right triangles. If we write the pythagorean theorem for each of them, we have the following system

If we solve the first two equations for y squared, we have

And we can deduce

So that the third equation becomes

(we can't accept the negative root because negative lengths make no sense)
We have to assume that the speed before being stuck was sufficient to get to the destination on time had there been no delay. Call that speed "s" in km/h.
Since 200 km is "halfway", the total distance must be 400 km.
time = distance / speed
total time = (time for first half) + (delay) + (time for second half)
400/s = 200/s + 1 + 200/(s+10) . . . .times are in hours, distances in km
200/s = 1 + 200/(s+10) . . . . . . . . . . subtract 200/s
200(s+10) = s(s+10) +200s . . . . . . .multiply by s(s+10)
0 = s² +10s - 2000 . . . . . . . . . . . . . .subtract the left side
(s+50)(s-40) = 0
Solutions are s = -50, s = 40
The speed of the bus before the traffic holdup was 40 km/h.