Answer:
A
Step-by-step explanation:
x*y' + y = 8x
y' + y/x = 8 .... divide everything by x
dy/dx + y/x = 8
dy/dx + (1/x)*y = 8
We have something in the form
y' + P(x)*y = Q(x)
which is a first order ODE
The integrating factor is 
Multiply both sides by the integrating factor (x) and we get the following:
dy/dx + (1/x)*y = 8
x*dy/dx + x*(1/x)*y = x*8
x*dy/dx + y = 8x
y + x*dy/dx = 8x
Note the left hand side is the result of using the product rule on xy. We technically didn't need the integrating factor since we already had the original equation in this format, but I wanted to use it anyway (since other ODE problems may not be as simple).
Since (xy)' turns into y + x*dy/dx, and vice versa, this means
y + x*dy/dx = 8x turns into (xy)' = 8x
Integrating both sides with respect to x leads to
xy = 4x^2 + C
y = (4x^2 + C)/x
y = (4x^2)/x + C/x
y = 4x + Cx^(-1)
where C is a constant. In this case, C = -5 leads to a solution
y = 4x - 5x^(-1)
you can check this answer by deriving both sides with respect to x
dy/dx = 4 + 5x^(-2)
Then plugging this along with y = 4x - 5x^(-1) into the ODE given, and you should find it satisfies that equation.
Answer:
=13.73 ft²
Step-by-step explanation:
The diameter of the largest possible circle that can be cut out of a square is equal to the length of the side of the square.
Therefore the diameter of the circle cut from a square of side 8ft =8ft
r=4ft
Area of the remaining board= Area of square- area of circle
=side²-πr²
=8²-π×4²
=64-16π
=13.73 ft²