Answer:
12. The second one
13. The first one
14. The last one
15. The first one
16. 30 degrees
Step-by-step explanation:
<span>280
I'm assuming that this question is badly formatted and that the actual number of appetizers is 7, the number of entres is 10, and that there's 4 choices of desserts. So let's take each course by itself.
You can choose 1 of 7 appetizers. So we have
n = 7
After that, you chose an entre, so the number of possible meals to this point is
n = 7 * 10 = 70
Finally, you finish off with a dessert, so the number of meals is:
n = 70 * 4 = 280
Therefore the number of possible meals you can have is 280.
Note: If the values of 77, 1010 and 44 aren't errors, but are actually correct, then the number of meals is
n = 77 * 1010 * 44 = 3421880
But I believe that it's highly unlikely that the numbers in this problem are correct. Just imagine the amount of time it would take for someone to read a menu with over a thousand entres in it. And working in that kitchen would be an absolute nightmare.</span>
Answer:
5/4
Step-by-step explanation:
Answer:
y = 3x + 2
Step-by-step explanation:
Let's identify two clear points on this line. I can see (0, 2) and (-1, -1)
First you want to find the slope of the line that passes through these points. To find the slope of the line, we use the slope formula: (y₂ - y₁) / (x₂ - x₁)
Plug in these values:
(-1 - 2) / (-1 - 0)
Simplify the parentheses.
= (-3) / (-1)
Simplify the fraction.
-3/-1
= 3
This is your slope. Plug this value into the standard slope-intercept equation of y = mx + b.
y = 3x + b
To find b, we want to plug in a value that we know is on this line: in this case, I will use the first point (0, 2). Plug in the x and y values into the x and y of the standard equation.
2 = 3(0) + b
To find b, multiply the slope and the input of x(0)
2 = 0 + b
Now, we are left with 0 + b.
2 = b
Plug this into your standard equation.
y = 3x + 2
This is your equation.
Hope this helps!
Answer:

Step-by-step explanation:
From the question we are told that
Angle 
Height of plane 
Generally the equation for the total distance flown is mathematically given by


Therefore total distance flown is
