Answer:
1. 0.0692156863
2. 0.5761904762
3. 0.3969565217
4. 2.030769231
Step-by-step explanation:
Steps:
1) determine the domain
2) determine the extreme limits of the function
3) determine critical points (where the derivative is zero)
4) determine the intercepts with the axis
5) do a table
6) put the data on a system of coordinates
7) graph: join the points with the best smooth curve
Solution:
1) domain
The logarithmic function is defined for positive real numbers, then you need to state x - 3 > 0
=> x > 3 <-------- domain
2) extreme limits of the function
Limit log (x - 3) when x → ∞ = ∞
Limit log (x - 3) when x → 3+ = - ∞ => the line x = 3 is a vertical asymptote
3) critical points
dy / dx = 0 => 1 / x - 3 which is never true, so there are not critical points (not relative maxima or minima)
4) determine the intercepts with the axis
x-intercept: y = 0 => log (x - 3) = 0 => x - 3 = 1 => x = 4
y-intercept: The function never intercepts the y-axis because x cannot not be 0.
5) do a table
x y = log (x - 3)
limit x → 3+ - ∞
3.000000001 log (3.000000001 -3) = -9
3.0001 log (3.0001 - 3) = - 4
3.1 log (3.1 - 3) = - 1
4 log (4 - 3) = 0
13 log (13 - 3) = 1
103 log (103 - 3) = 10
lim x → ∞ ∞
Now, with all that information you can graph the function: put the data on the coordinate system and join the points with a smooth curve.
Answer:
y = 3x+2
Step-by-step explanation:
(3,7) (6,9) Y2=9 Y1=7 X2=6 X1=3
M = 9-7/6/3
2/3

Subtract 3 from both sides,

Let x = X and y - 3 = Y
Then,

So, we have shifted the origin to a point (0, 3).
This is an odd function and the graph of an odd function is symmetrical about the origin.
That is, symmetrical about X = 0, Y = 0
Symmetrical about x = 0,, y - 3 = 0
Symmetrical about x = 0, y = 3.
Hence, the graph is symmetrical about the point (0, 3).