Answer:
Standard error = 0.4
Step-by-step explanation:
Step 1
We find the Standard Deviation
The formula = √(x - mean)/n - 1
n = 15
Mean = 1.93 hours
= √(0- 1.93)² + (0-1.93)² +(0- 1.93)²+( 0- 1.93)²+ (1- 1.93)² + (1- 1.93)² +(1 - 1.93)² +(2 - 1.93)² + (2 - 1.93)² + (2 - 1.93)² + (2 - 1.93)² + ( 2 - 1.93)² +(4 - 1.93)² +(4 - 1.93)² + (5 - 1.93)²/15 - 1
= √(3.737777776 + 3.737777776 + 3.737777776 + 0.871111111 +0.871111111 + 0.871111111 + 0.004444444445+ 0.004444444445 + 0.004444444445 + 0.004444444445 + 0.004444444445 + 1.137777778 + 4.271111112 + 4.271111112 + 9.404444446)/15 - 1
= √2.352380952
= 1.533747356
Step 2
We find the standard error
The formula = Standard Deviation/√n
Standard deviation = 1.533747356
n = 15
= 1.533747356/√15
= 1.533747356 /3.87298334621
= 0.39601186447
Approximately = 0.4
Therefore, the standard error is 0.4
The two numbers I will call x and y.
x + y = 31
x * y = 150
You then solve for one variable in either equation and substitute it into the other equation.
x + y = 31
x = 31 - y
Then you plug it in:
x * y = 150
(31 - y) * y = 150
-y² + 31y = 150
y² - 31y + 150 = 0 Then factor:
(y - 6)(y - 25) = 0
y - 6 = 0 y - 25 = 0
y = 6 y = 25
When you plug y into the original equations, it comes out that the two numbers are 6 and 25. You can check your work because 6+25 = 31 and 6*25 = 150. Hope this helps! :)
Answer:
Jameson will have about $267.58 less in his account than Quincy
Step-by-step explanation: