"determine the location" or namely, is it inside the circle, outside the circle, or right ON the circle?
well, we know the center is at (1,-5) and it has a radius of 5, so the distance from the center to any point on the circle will just be 5, now if (4,-1) is less than that away, is inside, if more than that is outiside and if it's exactly 5 is right ON the circle.
well, we can check by simply getting the distance from the center to the point (4,-1).
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ \stackrel{center}{(\stackrel{x_1}{1}~,~\stackrel{y_1}{-5})}\qquad (\stackrel{x_2}{4}~,~\stackrel{y_2}{-1})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ d = \sqrt{[4-1]^2+[-1-(-5)]^2}\implies d=\sqrt{(4-1)^2+(-1+5)^2} \\\\\\ d = \sqrt{3^2+4^2}\implies d =\sqrt{9+16}\implies d=\sqrt{25}\implies \stackrel{\textit{right on the circle}}{d = 5}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%5Cstackrel%7Bcenter%7D%7B%28%5Cstackrel%7Bx_1%7D%7B1%7D~%2C~%5Cstackrel%7By_1%7D%7B-5%7D%29%7D%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B4%7D~%2C~%5Cstackrel%7By_2%7D%7B-1%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%20%3D%20%5Csqrt%7B%5B4-1%5D%5E2%2B%5B-1-%28-5%29%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%284-1%29%5E2%2B%28-1%2B5%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%20%3D%20%5Csqrt%7B3%5E2%2B4%5E2%7D%5Cimplies%20d%20%3D%5Csqrt%7B9%2B16%7D%5Cimplies%20d%3D%5Csqrt%7B25%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bright%20on%20the%20circle%7D%7D%7Bd%20%3D%205%7D)
Answer:
x=-6 y=-1
Step-by-step explanation:
// Solve equation [2] for the variable y
[2] y = -x - 7
// Plug this in for variable y in equation [1]
[1] 3x - 2•(-x -7) = -16
[1] 5x = -30
// Solve equation [1] for the variable x
[1] 5x = - 30
[1] x = - 6
// By now we know this much :
x = -6
y = -x-7
// Use the x value to solve for y
y = -(-6)-7 = -1
Solution :
{x,y} = {-6,-1}
I believe the answer to your question is three you have to be three usually always three
Answer:
22.
R= -8, 15
S= -5, 9
T= -8,9
23.
J = 4, 4
K = 4, 3
L = 1, 1
M = 1, 4
Step-by-step explanation:
rotation of -90= y, -x
so R (-7, -5) = -5,7
S (-1, -2) = -2, 1
T (-1, -5) = -5, 1
now we translate 3 left (x-3) and 8 up (y+8)
R (-5, 7) = -8, 15
S (-2, 1) = -5, 9
T (-5, 1) = -8, 9
reflection of x-axis= x, -y
J (-4, 4) = -4, -4
K (-3, 4) = -3, -4
L (-1, 1) = -1, -1
M (-4, 1) = -4, -1
Then a 180° rotation is (-y, -x)
J (-4, -4) = 4, 4
K (-3, -4) = 4, 3
L (-1, -1) = 1, 1
M (-4, -1) = 1, 4