Answer:
V = 10384 in³, L = 59 in, w = 22 in
Step-by-step explanation:
Let:
h = the side of the square;
L = the length of the box;
w = the width of the box
V = the box volume.
L = 75 - 2h
w = 38 - 2h
V = h*L*w
V = h*(75 - 2h)*(38 - 2h)
V = h*(2850 - 150h - 76h + 4h²)
V = 4h³ - 226h² + 2850h
The maximum point (the largest volume) is where the derivate is equal to 0
V' = 12h² - 452h + 2850
12h² - 452h + 2850 = 0
Using Bhaskara's equation:
Δ =(- 452)² - 4*12*2850
Δ = 204304 - 136800
Δ = 67504
h = (-(-452) ± √67504)/2*12
h = (452± 259.8)/24
h1 = (452 + 259.8)/24 = 29.66 in
h2 = (452 - 259.8)/24 = 8 in
Let's calcule the V for these both h:
V1 = 4*(29.66)³ - 226*(29.66)² + 2850*29.66
V1 = -9915.3 in³
V2 = 4*(8)³ - 226*(8)² + 2850*8
V2 = 10384 in³
V must be positive, so h = 8 in, V = 10384 in³, L = 59 in, w = 22 in.