Answer:
I'm confused by the points:
Why three points for each (A, B, C, and D)?: A: (0,6)(0,6)(0,6), etc.
Points A and B [(0,6) and (4,2)] are consistant with a straight line of the form y=-x+6.
Points C and D [(-6,8),(-8,10)]are on the line y=-x+2.
A and B aren't related to C and D.
Step-by-step explanation:
Answer:
Hope Choose Capital one who is the person I was just thinking about parallel with you and I hope you feel
19-15 = C Number of students over the course of a year!
19-15 gives us a total of 4 students over the course of the year!
So the value of C is 4 students
By using distributive property you can distribute (XYZ)4 and get a simplified answer of 4(x)+ 4(y) + 4 (z). The parenthesis show that 4(xyz) is not simplified and could also be written as 4(x)+ 4(y) + 4 (z).
Swapping rows alters the sign of the determinant:
![\begin{vmatrix} x & y & z \\ -8 & 2 & -12 \\ u & v & w \end{vmatrix} = - \begin{vmatrix} x & y & z \\ u & v & w \\ -8 & 2 & -12 \end{vmatrix}](https://tex.z-dn.net/?f=%5Cbegin%7Bvmatrix%7D%20x%20%26%20y%20%26%20z%20%5C%5C%20-8%20%26%202%20%26%20-12%20%5C%5C%20u%20%26%20v%20%26%20w%20%5Cend%7Bvmatrix%7D%20%3D%20-%20%5Cbegin%7Bvmatrix%7D%20x%20%26%20y%20%26%20z%20%5C%5C%20u%20%26%20v%20%26%20w%20%5C%5C%20-8%20%26%202%20%26%20-12%20%5Cend%7Bvmatrix%7D)
Multiplying a single row by a scalar scales the determinant by the same amount:
![\begin{vmatrix} x & y & z \\ u & v & w \\ -8 & 2 & -12 \end{vmatrix} = -2 \begin{vmatrix} x & y & z \\ u & v & w \\ 4 & -1 & 6 \end{vmatrix}](https://tex.z-dn.net/?f=%5Cbegin%7Bvmatrix%7D%20x%20%26%20y%20%26%20z%20%5C%5C%20u%20%26%20v%20%26%20w%20%5C%5C%20-8%20%26%202%20%26%20-12%20%5Cend%7Bvmatrix%7D%20%3D%20-2%20%5Cbegin%7Bvmatrix%7D%20x%20%26%20y%20%26%20z%20%5C%5C%20u%20%26%20v%20%26%20w%20%5C%5C%204%20%26%20-1%20%26%206%20%5Cend%7Bvmatrix%7D)
Then
![\begin{vmatrix} x & y & z \\ -8 & 2 & -12 \\ u & v & w \end{vmatrix} = -(-2) \begin{vmatrix} x & y & z \\ u & v & w \\ 4 & -1 & 6 \end{vmatrix} = 2\times(-6) = \boxed{-12}](https://tex.z-dn.net/?f=%5Cbegin%7Bvmatrix%7D%20x%20%26%20y%20%26%20z%20%5C%5C%20-8%20%26%202%20%26%20-12%20%5C%5C%20u%20%26%20v%20%26%20w%20%5Cend%7Bvmatrix%7D%20%3D%20-%28-2%29%20%5Cbegin%7Bvmatrix%7D%20x%20%26%20y%20%26%20z%20%5C%5C%20u%20%26%20v%20%26%20w%20%5C%5C%204%20%26%20-1%20%26%206%20%5Cend%7Bvmatrix%7D%20%3D%202%5Ctimes%28-6%29%20%3D%20%5Cboxed%7B-12%7D)