He went to the Galapagos Islands and studied the difference in sea-turtles shells and birds beaks.
<span>The cell could not function with 2 nuclei</span>
Answer:
The source of energy that is used to power the movement of contraction in working muscles is adenosine triphosphate (ATP) – the body's biochemical way to store and transport energy. However, ATP is not stored to a great extent in cells. So once muscle contraction starts, the making of more ATP must start quickly.
Answer:
Electron transport chain and ATP synthase
Explanation:
The inner mitochondrial membrane contains an electron transport chain and ATP synthesis. Four membrane protein complexes serve as the electron carriers and are embedded in the inner mitochondrial membrane. These protein complexes are called complex I, II, III and IV. Transfer of electrons from NADH and FADH2 to terminal electron acceptor oxygen occurs via these protein complexes.
During electron transfer, the pumping of protons towards the inner mitochondrial membrane creates an electrochemical gradient. The downhill transfer of protons back to the matrix via proton channel of ATP synthase drives phosphorylation of ADP. Therefore, presence of all the protein complexes of the electron transport chain and ATP synthase is required for electron transfer and ATP synthesis.
Answer:
The corpus callosum is a thick bundle of nerve fibres that ensures both sides of the brain can communicate and send signals to each other.