Answer:
The endoplasmic reticulum can either be smooth or rough, and in general its function is to produce proteins for the rest of the cell to function. The rough endoplasmic reticulum has on it ribosomes, which are small, round organelles whose function it is to make those proteins.
Hairpin like structures are formed in both DNA and RNA but are common in RNA than in DNA. This is because DNA can be double stranded or single stranded while RNA is generally single stranded structure that can be double stranded only when it forms a hair pin like structure.
The features of hairpin structure in RNA are as follows:
1. This structure is a building block of many secondary structures of RNA.
2. The termination sequence during transcription also forms a hairpin loop like structure.
3. tRNA also forms a hairpin loop like structure and helps in the process of translation.
The respiratory system is the network of organs and tissues that help you breathe. It includes your airways, lungs and blood vessels. The muscles that power your lungs are also part of the respiratory system. These parts work together to move oxygen throughout the body and clean out waste gases like carbon dioxide.
Hope this help
Answer:
The best possible outcome for the cell in the event of mis-copied mRNA is for the mis-copied sequence to code for the same amino acid as the correct sequence would have done
Explanation: The process of transcription during which the message in DNA is transcribed as genetic codes into mRNA is sometimes not error proof. Synthesized mRNA is usually transported into the cytoplasm where the codes are translated into protein.
Each genetic code which is usually a sequence of 3 purine/pyrimidine bases codes for an amino acid. However, due to the degenerate nature of the genetic codes, more than one codon can code for the same amino acid. The degenerate nature is caused by the fact that there are 64 possible codons and there are 20 amino acids in nature. For example, UUA, UUU and UUG can be coding for the same amino acid in nature.
Hence, if a mistake occur during transcription, the best possible scenario for the cell is that the mis-copied sequence will end up coding for the same amino acid(s) as the correct correct sequence would.
Answer:
a. both scientists had different interests.
Explanation:
Newton focused in physics for the most part and the study of what we know now as Newton's laws
while Gallileo focused on planets and astrology