The top answer on your screen is the answer. Hope this help
Answer:
y = 3x + 4
Step-by-step explanation:
According to the given question, the expression to represent all the books in Ms. Canton's bookcase is shown below:-
y indicates the total amount of books
x indicates the equal cost of books on 3 bookshelves
while
+4 indicates 4 other books on the fourth bookshelf
So, the expression will be
y = 3x + 4
Therefore the correct answer is y = 3x + 4
Answer:
easy peasy lemon squeasy
Step-by-step explanation:
1. base of triangle: it is an equilateral triangle, so any side of the triangle you take is the base, (usually the largest side of the triangle is the base)
so that would be => 10 inches,
2. a property of an equilateral triangle is that , the median of the triangle coincides with the height of the triangle,
therefore, the height bisects the base and makes a right triangle with another side, therefore by using the Pythagoras theorem, we find it to be 8.66(approx)
now,
area of the triangle would be (putting the values we just found in the formula given)
=> [(10)(8.66)]/ 2
=>43.3 square inches
The answer is A,

. This is because when plugging in -2 for x, the expression will look like this:

. To make the exponent positive, you have to flip it into a fraction. Then it will be

. Lastly, you simplify the denominator into 81.
Step-by-step explanation:
<h2>
<em><u>You can solve this using the binomial probability formula.</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows:</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: </u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) </u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) n=4, x=2, k=2</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) n=4, x=2, k=2when x=2 (4 2)(1/6)^2(5/6)^4-2 = 0.1157</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) n=4, x=2, k=2when x=2 (4 2)(1/6)^2(5/6)^4-2 = 0.1157when x=3 (4 3)(1/6)^3(5/6)^4-3 = 0.0154</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) n=4, x=2, k=2when x=2 (4 2)(1/6)^2(5/6)^4-2 = 0.1157when x=3 (4 3)(1/6)^3(5/6)^4-3 = 0.0154when x=4 (4 4)(1/6)^4(5/6)^4-4 = 0.0008</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) n=4, x=2, k=2when x=2 (4 2)(1/6)^2(5/6)^4-2 = 0.1157when x=3 (4 3)(1/6)^3(5/6)^4-3 = 0.0154when x=4 (4 4)(1/6)^4(5/6)^4-4 = 0.0008Add them up, and you should get 0.1319 or 13.2% (rounded to the nearest tenth)</u></em></h2>