(2y² + 7y + 11) - (8y² - 5y + 7) you can distribute the negative sign to the second expression and then combine the like terms
new expression: (2y² + 7y + 11) (-8y² + 5y - 7)
2y² and -8y² equals -6y²
7y and 5y equals 12y
11 and -7 equals 4
The answer is -6y² + 12y + 4
<h3>Answer: C) none of the equations are identities</h3>
If you plugged theta = 0 into the first equation, then you would have
sin(45) + cos(45) = sin(0) + cos(0)
sqrt(2) = 1
which is a false equation. We don't have an identity here.
The same story happens with the second equation. Plug in theta = 0 and it becomes
cos(60) - sin(60) = cos^2(0) + tan(0)
1/2 - sqrt(3)/2 = 1 + 0
-0.37 = 1
which is false.
Answer:
1)247 + 211 = 458
2)458 - 211 = 247
Step-by-step explanation:
Answer:
you can apply percentages knowledge and reverse percentages knowledge. you can look at the formulas and it will be dead easy.
Step-by-step explanation: