Answer:
The minimum value of f(x) is 2
Step-by-step explanation:
- To find the minimum value of the function f(x), you should find the value of x which has the minimum value of y, so we will use the differentiation to find it
- Differentiate f(x) with respect to x and equate it by 0 to find x, then substitute the value of x in f(x) to find the minimum value of f(x)
∵ f(x) = 2x² - 4x + 4
→ Find f'(x)
∵ f'(x) = 2(2)
- 4(1)
+ 0
∴ f'(x) = 4x - 4
→ Equate f'(x) by 0
∵ f'(x) = 0
∴ 4x - 4 = 0
→ Add 4 to both sides
∵ 4x - 4 + 4 = 0 + 4
∴ 4x = 4
→ Divide both sides by 4
∴ x = 1
→ The minimum value is f(1)
∵ f(1) = 2(1)² - 4(1) + 4
∴ f(1) = 2 - 4 + 4
∴ f(1) = 2
∴ The minimum value of f(x) is 2
Answer:
14
Step-by-step explanation:
Answer:
The appropriate probability model for X is a Binomial distribution,
X
Bin (<em>n</em> = 5, <em>p</em> = 1/33).
Step-by-step explanation:
The random variable <em>X</em> can be defined as the number of American births resulting in a defect.
The proportion of American births that result in a birth defect is approximately <em>p</em> = 1/33.
A random sample of <em>n</em> = 5 American births are selected.
It is assumed that the births are independent, i.e. a birth can be defective or not is independent of the other births.
In this experiment the success is defined as a defective birth.
The random variable <em>X</em> satisfies all criteria of a Binomial distribution.
The criteria are:
- Number of observations is constant
- Independent trials
- Each trial has only two outcomes: Success and Failure
- Same probability of success for each trial
Thus, the appropriate probability model for X is a Binomial distribution, Bin (<em>n</em> = 5, <em>p</em> = 1/33).
Answer:
quadrant 1.
Step-by-step explanation:
A:(9,3)
B:(7,5)
C:(5,2)
Hope this helped you.