1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wewaii [24]
4 years ago
5

Identify the range of the function shown in the graph.​

Mathematics
1 answer:
AlladinOne [14]4 years ago
3 0

Answer:

C.

Step-by-step explanation:

Range is the y-values. Since our max and min for y-values is 5 and -5, respectively, our answer is C.

You might be interested in
I need help anyone?
victus00 [196]

Answer:

0

Step-by-step explanation:

When you substitute x=1 for f(1),

you get f(1)=0

and the absolute value of 0 is 0.

hope I answered it correct.

please give brainliest, thanks!

3 0
3 years ago
Thoughtful preparation and frequent communication can help members of a committee avoid _______________ of their efforts.
Leya [2.2K]
(A)Duplication is your answer.
4 0
3 years ago
Given f(x)=x^2+2x+3 and g(x)=x+4/3 solve for f(g(x)) when x=2
Makovka662 [10]

Answer:

\displaystyle\mathsf{f(g(2)) \:=\:\frac{187}{9}}

Step-by-step explanation:

We are provided with the following functions:

f(x) = x² + 2x + 3

\displaystyle\mathsf{ g(x)\:=\:x+\frac{4}{3} }

The given problem also requires to find the Composition of Functions, f(g(x)) when x = 2.

The <u>Composition of Function</u> <em>f</em> with function <em>g</em> can be expressed as ( <em>f ° g </em>)(x) = f(g(x)).  In solving for the composition of functions, we must first evaluate the <em>innermost</em> function, g(x), then use the output as an input for f(x).

<h2>Solve for f(g(x)) when x = 2:</h2><h3><u>Find g(x):</u></h3>

Starting with g(x), we will use x = 2 as an <u>input</u> value into the function:

\displaystyle\mathsf{ g(x)\:=\:x+\frac{4}{3} }

\displaystyle\mathsf{ g(2)\:=\:(2)+\frac{4}{3} }

Transform the first term, x = 2, into a fraction with a denominator of 3 to combine with 4/3:

\displaystyle\mathsf{ g(2)\:=\:\frac{2\: \times\ 3}{3}+\frac{4}{3} }

\displaystyle\mathsf{ g(2)\:=\:\frac{6}{3}+\frac{4}{3}\:=\:\frac{6+4}{3}}

\displaystyle\mathsf{ g(2)\:=\:\frac{10}{3} }

\displaystyle\mathsf{Therefore,\:\: g(2)\:=\:\frac{10}{3} }

<h3><u>Find f(x):</u></h3>

Next, we will use  \displaystyle\mathsf{\frac{10}{3}}&#10; as input for the function, f(x) = x² + 2x + 3:

f(x) = x² + 2x + 3

\displaystyle\mathsf{f\Bigg (\frac{10}{3}\Bigg)\:=\:x^2 \:+ 2x\:+\:3}

\displaystyle\mathsf{f\Bigg (\frac{10}{3}\Bigg) \:=\:\Bigg (\frac{10}{3}\Bigg)^{2}\:+ 2\Bigg(\frac{10}{3}\Bigg) \:+\:3}

Use the <u>Quotient-to-Power Rule of Exponents</u> onto the <em>leading term </em>(x²):

\displaystyle\mathsf{Quotient-to-Power\:\:Rule:\:\: \Bigg(\frac{a}{b}\Bigg)^m\:=\:\frac{a^m}{b^m} }

\displaystyle\mathsf{f\Bigg (\frac{10}{3}\Bigg) \:=\:\Bigg (\frac{10\:^2}{3\:^2}\Bigg)\:+ 2\Bigg(\frac{10}{3}\Bigg) \:+\:3}

Multiply the numerator (10) of the middle term by 2:

\displaystyle\mathsf{f\Bigg (\frac{10}{3}\Bigg) \:=\:\Bigg (\frac{100}{9}\Bigg)\:+ \Bigg(\frac{20}{3}\Bigg) \:+\:\frac{3}{1}}

  • Determine the <u>least common multiple (LCM)</u> of the denominators from the previous step: 9, 3, and 1 (which is 9).
  • Then, transform the denominators of 20/3 and 3/1 on the <u>right-hand side</u> of the equation into like-fractions:

                       \displaystyle\mathsf{\frac{20}{3}\Rightarrow \:\frac{20\:\times\ 3}{3\:\times\ 3} =\:\frac{60}{9}}

                        \displaystyle\mathsf{\frac{3}{1}\Rightarrow \:\frac{3\:\times\ 9}{1\:\times\ 9} =\:\frac{27}{9}}

Finally, add the three fractions on the right-hand side of the equation:

\displaystyle\mathsf{f\Bigg (\frac{10}{3}\Bigg) \:=\:\Bigg (\frac{100}{9}\Bigg)\:+ \Bigg(\frac{60}{9}\Bigg) \:+\:\frac{27}{9}\:=\:\frac{187}{9}}

<h2>Final Answer:</h2>

\displaystyle\mathsf{Therefore,\:\:f(g(2)) \:=\:\frac{187}{9}.}

<h3>______________________________</h3>

<em>Keywords:</em>

Composition of functions

f o g

f (g(x))

____________________________________

Learn more about <u><em>Composition of Functions</em></u> here:

brainly.com/question/11388036

8 0
2 years ago
Whats the percentage increase from 14 to 26
Vikentia [17]
Percent increase = (new number - original number) / original number...* 100
                           = (26 - 14) / 14 ...* 100
                           = 12/14 * 100
                           = 1200/14
                           = 85.7% <==
8 0
4 years ago
Is this good led me know pl<br> Give GHJ=XJZ find each missing measure
lbvjy [14]

Answer/Step-by-step explanation:

Given that ∆GHJ is congruent to ∆XYZ, this:

<G = <X,

<H = <Y = 38°

<J = <Z,

GH = XY = 27 ft

HJ = YZ = 27 ft (two sides of an isosceles ∆ are the same)

GJ = XZ = 18 ft

a. GJ = 18 ft

b. XY = 27 ft

c. ZY = 27 ft

d. m<H = m<Y (corresponding angles)

m<H = 38° (substitution)

e. m<Z = (180 - 38)/2 (base triangles of an isosceles ∆ are equal)

m<Z = 142/2

m<Z = 71°

f. m<J = m<Z (corresponding angles)

m<J = 71° (substitution)

3 0
3 years ago
Other questions:
  • A club decides to sell T-Shirts for 15$ as a fund-raiser. It cost $20 plus $9 per T-Shirt to make them. How many T-Shirts need t
    6·1 answer
  • What is the median of the data 234, 355, 470, 476, and 765?
    7·2 answers
  • Write the arithmetic sequence 17,20,23,26... in standard form
    6·1 answer
  • I need help right now​
    12·2 answers
  • Find a formula for the sum S of the solutions of the quadratic equation ax²+bx+c=0 .
    11·1 answer
  • Evaluate the expression for the given value of the variable.<br><br> 60m; m=5
    8·2 answers
  • A rancher has a rectangular sheep pen that is 3 meters long and 2 meters wide. The rancher plans to increase both the length and
    8·1 answer
  • Please help, I will mark you brainly, thank you if you do
    12·1 answer
  • BRAINLIEST! PLS HELP MEEEE! Decimal Division!
    14·2 answers
  • Solve system of equations using any method y=3x and 5y+5x=40
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!