The answer is a. the abiotic components of an ecosystem
Explanation:
The problem says that the hairless phenotype never breeds true. That means that it's not the result of a homozygous genotype (H₁H₁ or H₂H₂), so it is caused by the heterozygous genotype (H₁H₂).
The <u>expected </u>offspring from the cross between two Mexican hairless would be:
<h3>P
H₁H₂ x
H₁H₂</h3><h3>F1 1/4
H₁H₁, 2/4
H₁H₂ and 1/4
H₂H₂.</h3>
And the <u>expected</u> phenotypic ratio 3:1. However, the observed offspring shows a 2:1 ratio. What's happening?
If the observed phenotypic ratio in the offspring of a monohybrid cross (a single gene with two alleles) is 2:1, we can suspect that one of the genotypes is lethal in homozygosis and therefore does not appear in the progeny (the puppies are born dead).
If we proposed that the H₂ allele is lethal in homozygosis, then:
- The H₁H₁ genotype would cause normal puppies --> 1
- The H₁H₂ genotype would cause hairless puppies --> 2
- The H₂H₂ is lethal and causes the death of puppies --> 0
The phenotypic ratios change to 2:1, as observed in the experiment.
Answer:
genes
Explanation:
genes determine your body;s characteristics such as hair color or their eye color.
Answer:
The correct answer is option a. "Double-stranded regions of RNA typically take on an B-form right-handed helix".
Explanation:
Most of the native double-stranded DNA is on an B-form right-handed helix, following the structure proposed by Watson and Crick with about 10–10.5 base pairs per turn. However, double-stranded RNA does not follow this structure, and most regions have an A-form structure. The A-form right-handed helix have slightly more base pairs per turn, which makes it 20-25% shorter than B-DNA.
Answer/Explanation:
The DNA in all living organisms is made up of 4 bases, adenine, thymine, guanine, cytosine. The RNA replaces thymine with uracil, making 5 types of nucleotide. The number of nucleotide pairs in a genome can range from half a million up to 100,000 million - meaning there are an exponential number of combinations of these 4 bases.
Imagine an organism exists that has only 2 nucleotides (<u><em>this is over 200,000x smaller than even the smallest bacterial genome</em></u>). If we allow any nucleotide at each of the 2 positions, then we have 4x4 (4²) or 16 possible combinations of sequences. For a nucleotide length of 4, the total number of possible combinations are 4⁴ or 256.
Since we are dealing with many millions of nucleotides, there are essentially infinite combinations of nucleotides, giving rise to the variation that produces over 20 million organisms on the planet.