A.0 I think ................
Answer: sin
= ±
Step-by-step explanation:
We very well know that,
cos2A=1−2sin²A
⟹ sinA = ±
As required, set A =
& cos a=
,thus we get
sin
=±
∴ sin
=±
= ±
since ,360° <
<450°
,180° <
<225°
Now, we are to select the value with the correct sign. It's is obvious from the above constraints that the angle a/2 lies in the III-quadrant where 'sine' has negative value, thus the required value is negative.
hope it helped!
C I’m pretty sure hope this helps
8 1/4 appe slices is the answer
Answer:
f(x) = x² + 2x + 1
Step-by-step explanation:
you know how to multiply 2 expressions ?
let's say in general we have
(a + b)(c + d)
you take one part of one expression and multiply it with all parts of the other expression, then you take the second part of the first expression and multiply it with all parts of the other expression, then a potential third part, then a fourth part and so on, and you add all these things together (well, depending on the actual signs, of course).
so, we get for this simple generic example
a×c + b×c + a×d + b×d
now we use that understanding for our question here.
(x+1)(x+1) = x×x + 1×x + x×1 + 1×1 = x² + x + x + 1 = x² + 2x + 1