Answer:
−2=−2x^3
Step-by-step explanation:
10x3= 3x2−20x−6=(10x3⋅(3x2))(−20x−6)=−600x6−180x5x2=−600x6−180x5−2x⋅(2x2)=−4x3−2x⋅x2=−2x^3
−2=−2x3
2x^2=−2x^3
−2=−2x^3
Answer with Step-by-step explanation:
We are given that
u+ v and u-v are orthogonal
We have to prove that u and v must have the same length.
When two vector a and b are orthogonal then

By using the property

We know that



Magnitude is always positive
When power of base on both sides are equal then base will be equal
Therefore,

Hence, the length of vectors u and v must have the same length.
Answer:
The answer is 10.
Step-by-step explanation:
7*2=14
Then the expression becomes 18-14+6
18-14=4
4+6=10
Answer:
2119 students use the computer for more than 40 minutes. This number is higher than the threshold estabilished of 2000, so yes, the computer center should purchase the new computers.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

The first step to solve this question is finding the proportion of students which use the computer more than 40 minutes, which is 1 subtracted by the pvalue of Z when X = 40. So



has a pvalue of 0.7881.
1 - 0.7881 = 0.2119
So 21.19% of the students use the computer for longer than 40 minutes.
Out of 10000
0.2119*10000 = 2119
2119 students use the computer for more than 40 minutes. This number is higher than the threshold estabilished of 2000, so yes, the computer center should purchase the new computers.