Answer:
When matter changes form, it's not chemical.
Explanation:
Something like melting of an ice cream. Shredding paper. Something that changes physically. Folding paper is another example.
Answer:
Cuando el agua de la superficie está caliente, la tormenta absorbe la energía térmica del agua, al igual que una pajita absorbe un líquido. Esto crea humedad en el aire. Si las condiciones del viento son adecuadas, la tormenta se convierte en huracán. Esta energía térmica es el combustible de la tormenta.
Explanation:
I hope this helps :)
The serotonin binds to a G-protein -coupled receptor and activates a G-subunit . This results in activation of PKA and closing of the potassium channels. This will subsequently decrease the influx of potassium ions into the cell, and lead to depolarization of the cell. This changes the membrane potential of the cell.
Aplysia are sea slugs which fall under the category of mollusks. Serotonin is a hormone which is responsible for the transfer of electrical signals from the brain to different parts. In this particular mollusk, serotonin was studied to find that it is an essential neurotransmitter that is responsible for the maintenance of synaptic plasticity in the neurons. Synaptic plasticity is the feature which is essential for the communication of neurons. This is the modification which occurs at the synapses during the transmission of synapses. Without this activity, the transmission of signals would be impossible.
Learn more about depolarization here-
brainly.com/question/8438145
#SPJ4
Answer:
sea floor spreading occurs at mid ocean ridges
Answer:
C. Fi 1:0, F2 3:1
Explanation:
Firstly, Mendel's law of segregation states that the alleles of a gene will randomly separate into gametes during gamete formation. In this case involving a single trait, hence, a single gene. Mendel crossed two purebreeding plants i.e. homozygous plants that produced different phenotypes for the same gene. He obtained his offsprings which he called F1 offsprings. He realized that all the F1 offsprings expressed only one phenotype. For example, when he crossed homozygous tall (TT) and short (tt) plants, he got F1 offsprings that were all tall.
He then self-crossed these F1 offsprings to produce a F2 offsprings that had a phenotypic ratio of 3:1 i.e. 3tall, 1short plant. He concluded that the alleles of the single gene had segregated into the gametes but one allele was capable of masking the expression of another, as seen in the heterozygous F1 offsprings that were all tall (Tt).
Hence, he obtained a 1:O ratio for his F1 offsprings then a 3:1 ratio for his F2 offsprings.