Answer:
False. Because it is the answer.
Answer:
Step-by-step explanation:
We would set up the hypothesis test. This is a test of a single population mean since we are dealing with mean
For the null hypothesis,
H0: µ = 5000
For the alternative hypothesis,
H1: µ > 5000
Since the population standard deviation is given, z score would be determined from the normal distribution table. The formula is
z = (x - µ)/(σ/√n)
Where
x = sample mean
µ = population mean
σ = population standard deviation
n = number of samples
From the information given,
µ = 5000
x = 5430
σ = 600
n = 40
z = (5430 - 5000)/(600/√40) = 4.53
Looking at the normal distribution table, the probability corresponding to the z score is < 0.0001
Since alpha, 0.05 > than the p value, then we would reject the null hypothesis. Therefore, at a 5% level of significance, it can be concluded that they walked more than the mean number of 5000 steps per day.
Answer:
D. No, because the sample size is large enough.
Step-by-step explanation:
The central limit theorem states that "if we have a population with mean μ and standard deviation σ and take sufficiently large random samples from the population with replacement, then the distribution of the sample means will be approximately normally distributed. This will hold true regardless of whether the source population is normal or skewed, provided the sample size is sufficiently large".
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
If the sample size is higher than 30, on this case the answer would be:
D. No, because the sample size is large enough.
And the reason is given by The Central Limit Theorem since states if the individual distribution is normal then the sampling distribution for the sample mean is also normal.
From the central limit theorem we know that the distribution for the sample mean
is given by:
If the sample size it's not large enough n<30, on that case the distribution would be not normal.
He would have to play 11 games. and 3 games plus a membership in order to equal the same amount of 605