Answer:
(2x+1)(2x−1)
Step-by-step explanation:
4x^2−1
(2x+1)(2x−1)
In a quadratic function, y = a(x²) the smaller the coefficient "a", the larger is the parabola:
From widest to narrowest:
1) y=1/3x² (Widest)
2) y= -1/2x² (Wider)
3) y=-9x² (narrowest)
Pretty simple: The answer is D
It has not been indicated whether the figure in the questions is a triangle or a quadrilateral. Irrespective of the shape, this can be solved. The two possible shapes and angles have been indicated in the attached image.
Now, from the information given we can infer that there is a line BD that cuts angle ABC in two parts: angle ABD and angle DBC
⇒ Angle ABC = Angle ABD + Angle DBC
Also, we know that angle ABC is 1 degree less than 3 times the angle ABD, and that angle DBC is 47 degree
Let angle ABD be x
⇒ Angle ABC = 3x-1
Also, Angle ABC = Angle ABD + Angle DBC
Substituting the values in the above equations
⇒ 3x-1 = x+47
⇒ 2x = 48
⇒ x = 24
So angle ABD = 24 degree, and angle ABC = 3(24)-1 = 71-1 = 71 degree
Answer:
Heights of 29.5 and below could be a problem.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean and standard deviation , the z-score of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
The heights of 2-year-old children are normally distributed with a mean of 32 inches and a standard deviation of 1.5 inches.
This means that
There may be a problem when a child is in the top or bottom 5% of heights. Determine the heights of 2-year-old children that could be a problem.
Heights at the 5th percentile and below. The 5th percentile is X when Z has a p-value of 0.05, so X when Z = -1.645. Thus
Heights of 29.5 and below could be a problem.