95-55 is the simpliest form
The area is 36 units squared.
You have three ways you can solve this question.
Method 1:
Split the rhombus into two equal triangles.
You will get triangle ACD and triangle ACB.
Count the base length and height length of each triangle using the diagram.
You will get base = 6 units and height = 6 units. Plug this into the area of a triangle and then multiply it by 2.
A = bh/2 * 2
A = 6(6) / 2 * 2
A = 36 / 2 * 2
A = 18 * 2
A = 36
Method 2:
Calculate the length of DP.
The length of line segment DP is √28.8
Calculate the length of DC.
The length of line segment DC is 3√5
Put into equation A = bh.
A = bh
A = 3√5(√28.8)
A = 36
Method 3:
Calculate the length of each diagonal and put into formula A = 1/2(d1 * d2)
Diagonal DB = 12 units
Diagonal AC = 6 units
A = 1/2(d1 * d2)
A = 1/2(12 * 6)
A = 1/2(72)
A = 36
I love procrastinating my history essay for this :D
1.-4
2.-6
3.2
4.-2
here you go.
(i) I used distributive property to get the x’s and y’s out of parentheses. I then combined like-terms to simplify until I could do no more. That is your final answer for (i) is -3x - 12y
(ii) This one is similar to the first one, just with no parentheses. I combined like terms again until not like terms were left. Your final answer for (ii) is -3k -2 -2n
(iii) I started by dividing 15 by 3 and got 5, and because the 15 had an x to it, you get 5x. I then moved onto the next term, 9. 9 divided by 3, to get 3. Your final answer for (iii) is 5x + 3
Answer:h=−5t2−10t+70
Step-by-step explanation:
<!>BRAINLIEST APPERICATED<!> :D