Answer:
x = 6
Step-by-step explanation:
3x - 3 = 15
3x = 15 + 3
3x = 18
x = 18/3
x = 6
hope it helps!
Answer:

Step-by-step explanation:
We are asked to divide our given fraction:
.
We will simplify our division problem using rules of exponents.
Using product rule of exponents
we can write:


Substituting these values in our division problem we will get,

Using power rule of exponents
we will get,


Using quotient rule of exponent
we will get,


Using product rule of exponents
we will get,


Upon canceling out
we will get,

Using power rule of exponents
we will get,


Therefore, our resulting quotient will be
.
Answer:
24.5 unit²
Step-by-step explanation:
Area of ∆
= ½ | x₁(y₂ - y₃) + x₂(y₃ - y₁) + x₃(y₁ - y₂) |
= ½ | (-1)(3 -(-4)) + 6(-4 -3) + (-1)(3 - 3) |
= ½ | -7 - 42 |
= ½ | - 49 |
= ½ (49)
= 24.5 unit²
<u>Method 2:</u>
Let the vertices are A, B and C. Using distance formula:
AB = √(-1-6)² + (3-3)² = 7
BC = √(-6-1)² + (-4-3)² = 7√2
AC = √(-1-(-1))² + (4-(-3))² = 7
Semi-perimeter = (7+7+7√2)/2
= (14+7√2)/2
Using herons formula:
Area = √s(s - a)(s - b)(s - c)
here,
s = semi-perimeter = (14 + 7√2)/2
s - a = S - AB = (14+7√2)/2 - 7 = (7 + √2)/2
s - b = (14+7√2)/2 - 7√2 = (14 - 7√2)/2
s - c = (14+7√2)/2 - 7 = (7 + √2)/2
Hence, on solving for area using herons formula, area = 49/2 = 24.5 unit²
Answer:
c=256
Step-by-step explanation:
m²+32m+c=m²+32m+(32/2)²-(32/2)²+c
=m²+32m+16²-16²+c
=(m+16)²-256+c
for it to be a complete square -256+c=0
or c=256