Answer:

Step-by-step explanation:
We want to find an equivalent expression for
![(\sqrt[4]{9})^{ \frac{1}{2}x}](https://tex.z-dn.net/?f=%20%28%5Csqrt%5B4%5D%7B9%7D%29%5E%7B%20%5Cfrac%7B1%7D%7B2%7Dx%7D%20%20)
To find an equivalent expression, we need to apply the following property of exponents:
![{a}^{ \frac{m}{n}}=( \sqrt[n]{ {a}} )^{m}](https://tex.z-dn.net/?f=%20%7Ba%7D%5E%7B%20%5Cfrac%7Bm%7D%7Bn%7D%7D%3D%28%20%5Csqrt%5Bn%5D%7B%20%7Ba%7D%7D%20%20%29%5E%7Bm%7D%20)
We let a=9, n=4 and m=½x
Then :
![{9}^{ \frac{ \frac{1}{2}x}{4}}=( \sqrt[4]{ {9}} )^{ \frac{1}{2}x}](https://tex.z-dn.net/?f=%20%7B9%7D%5E%7B%20%5Cfrac%7B%20%5Cfrac%7B1%7D%7B2%7Dx%7D%7B4%7D%7D%3D%28%20%5Csqrt%5B4%5D%7B%20%7B9%7D%7D%20%20%29%5E%7B%20%5Cfrac%7B1%7D%7B2%7Dx%7D%20)
Simplify the left hand side to get:
![{9}^ {\frac{1}{8}x} =( \sqrt[4]{ {9}} )^{ \frac{1}{2}x}](https://tex.z-dn.net/?f=%7B9%7D%5E%20%7B%5Cfrac%7B1%7D%7B8%7Dx%7D%20%3D%28%20%5Csqrt%5B4%5D%7B%20%7B9%7D%7D%20%20%29%5E%7B%20%5Cfrac%7B1%7D%7B2%7Dx%7D%20)
Therefore the correct answer is:

Ab is congruent to de so the second choice
First, illustrate the problem into a diagram like the one shown in the attached picture. The component vectors are shown in red (y-component) and blue (x-component). Since this is a right triangle, let's apply the trigonometric functions of sine and cos.
y-component, vy:
sin (π/3) = vy/8
vy = 6.928x-component, vx:
cos (π/3) = vx/8
vx = 4
1/11 is your answer
Hope this helps :)
You didn’t upload any picture maybe you forgot to