X - 9/3 = 2
Simplify 9/3, 9/3 = 3
x - 3 = 2
Add 3 on both sides
x = 5
Answer: 20
Step-by-step explanation:
Follow order of operations (PEMDAS)
20÷1÷[(10÷5)÷2] Given
20÷1÷[(2)÷2] Do 10÷5 in parenthesis
20÷1÷[(1)] Do (2)÷2
20÷1 Do 1÷[(1)]
20 Do 20÷1, and that is your answer
Answer:
The straight time pay for $ 7.60 per hour and 40 work hours per week is $ 304.
Step-by-step explanation:
Let suppose that worker is suppose to work 8 hours per day, so that he must work 5 days weekly. The straight time is the suppose work time in a week, the pay is obtained after multiplying the hourly rate by the amount of hours per week. That is:


The straight time pay for $ 7.60 per hour and 40 work hours per week is $ 304.
Answer:
50(115-y) + 25y = 4125 [from eq2]
5750 - 50y + 25y = 4125 [distribute]
5750 - 25y = 4125
-25y = -1625
y = 65 [divide both sides by (-25)]
There are 65 small boxes.
Put that value into either equation (now, which is easier?) to solve for x:
x = 115 - y
x = 115 - 65
x = 50
There are 50 large boxes.
- Mring0506
Answer:
Probability that the average mileage of the fleet is greater than 30.7 mpg is 0.7454.
Step-by-step explanation:
We are given that a certain car model has a mean gas mileage of 31 miles per gallon (mpg) with a standard deviation 3 mpg.
A pizza delivery company buys 43 of these cars.
<em>Let </em>
<em> = sample average mileage of the fleet </em>
<em />
The z-score probability distribution of sample average is given by;
Z =
~ N(0,1)
where,
= mean gas mileage = 31 miles per gallon (mpg)
= standard deviation = 3 mpg
n = sample of cars = 43
So, probability that the average mileage of the fleet is greater than 30.7 mpg is given by = P(
<em> </em>> 30.7 mpg)
P(
<em> </em>> 30.7 mpg) = P(
>
) = P(Z > -0.66) = P(Z < 0.66)
= 0.7454
<em>Because in z table area of P(Z > -x) is same as area of P(Z < x). Also, the above probability is calculated using z table by looking at value of x = 0.66 in the z table which have an area of 0.7454.
</em>
Therefore, probability that the average mileage of the fleet is greater than 30.7 mpg is 0.7454.