When multiplying binomials, one takes the first binomial and multiply each term by the first term of the second binomial, and then you do the same with the second term of the second binomial, to obtain:
4a^2+14a-2a-14
4a^2+12a-14
2. Find the derivative of f (x) = 5x + 9 at x = 2.
A) 9
B) 5
C) 0
D) 10<span><span>
</span><span>f (x) = 5x + 9
</span><span>The first thing we should do in this case is to derive the function.
</span><span>We have then:
</span><span>f '(x) = 5
</span><span>We now evaluate the function for the value of x = 2.
</span><span>We have then:
</span><span> f '(2) = 5
</span><span>Answer:
</span><span> the derivative of f (x) = 5x + 9 at x = 2 is:
</span><span>B) 5
</span><span>3. Find the derivative of f (x) = 8 divided by x at x = -1.
</span><span>4
</span><span>0
</span><span>8
</span><span> -8
</span><span>f (x) = 8 / x
</span><span>The first thing we should do in this case is to derive the function.
</span><span>We have then:
</span><span>f '(x) = ((0 * x) - (1 * 8)) / (x ^ 2)
</span><span> Rewriting we have:
</span><span> f '(x) = -8 / (x ^ 2)
</span><span>We now evaluate the function for the value of x = -1.
</span><span> We have then:
</span><span>f '(- 1) = -8 / ((- 1) ^ 2)
</span><span>f '(- 1) = -8
</span><span>Answer:
</span><span>The derivative of f (x) = 8 divided by x at x = -1 is:
</span><span>-8
</span><span> 4. Find the derivative of f (x) = negative 11 divided by x at x = 9.
</span><span> A) 11 divided by 9
</span><span>B) 81 divided by 11
</span><span>C) 9 divided by 11
</span><span> D) 11 divided by 81
</span><span> f (x) = -11 / x
</span><span>The first thing we should do in this case is to derive the function.
</span><span> We have then:
</span><span>f '(x) = ((0 * x) - (1 * (- 11))) / (x ^ 2)
</span><span>Rewriting we have:
</span><span> f '(x) = 11 / (x ^ 2)
</span><span>We now evaluate the function for the value of x = 9.
</span><span>We have then:
</span><span> f '(9) = 11 / ((9) ^ 2)
</span><span> f '(9) = 11/81
</span><span>Answer:
</span><span>the derivative of f (x) = negative 11 divided by x at x = 9 is:
</span><span>D) 11 divided by 81
</span><span>5. The position of an object at time is given by s (t) = 3 - 4t. </span><span>Find the instantaneous velocity at t = 8 by finding the derivative.
</span><span>s (t) = 3 - 4t
</span><span>For this case, the first thing we must do is derive the given expression.
</span><span>We have then:
</span><span>s' (t) = - 4
</span><span>We evaluate now for t = 8
</span><span> s' (8) = - 4
</span><span>Answer:
</span><span> the instantaneous velocity at t = 8 by finding the derivative is:
</span><span>s' (8) = - 4</span></span>
Answer:
option c 1000
Step-by-step explanation:
...................