Answer:
The slope is the change in Y over the change in X.
m = (0 - 3) / (0 - (-4)) = -3 / +4 = -0.75
Answer:
see the explanation
Step-by-step explanation:
we know that
A gross is equal to 120 ones or ten dozen
what is 15 tens - 1 gross
we know that
15 tens means ----> That you are adding 10, 15 times or multiplying 10 by 15, which gives you

1 gross means ---> That you are adding 10, 12 times or multiplying 10 by 12
which gives you

so
The algebraic expression of 15 tens - 1 gross is equal to

Convert to word expression
3 tens
Because there are 16 ounces in a pound, we can multiply 16 by 4 to get 64, there are 64 ounces of apples which is also the same as 4 pounds of apples. If 64 ounces of apples equals $5.60, and each apple is 4 ounces, we have to also divide 64 by 4 to find the number of apples. 64 divided by 4 is 16, so 16 apples for $5.60. To get the price PER apple, or for one apple, we have divide $5.60 by 16, which will give us $0.35, or $.35 per apple, which is actually a good price.
Plug 8 into the equation for y and you get 2+24 or 26.
Part A
Everything looks good but line 4. You need to put all of the "2h" in parenthesis so the teacher will know you are squaring all of 2h. As you have it right now, you are saying "only square the h, not the 2". Be careful as silly mistakes like this will often cost you points.
============================================================
Part B
It looks like you have the right answer. Though you'll need to use parenthesis to ensure that all of "75t/(2pi)" is under the cube root. I'm assuming you made a typo or forgot to put the parenthesis.
dh/dt = (25)/(2pi*h^2)
2pi*h^2*dh = 25*dt
int[ 2pi*h^2*dh ] = int[ 25*dt ] ... applying integral to both sides
(2/3)pi*h^3 = 25t + C
2pi*h^3 = 3(25t + C)
h^3 = (3(25t + C))/(2pi)
h^3 = (75t + 3C)/(2pi)
h^3 = (75t + C)/(2pi)
h = [ (75t + C)/(2pi) ]^(1/3)
Plug in the initial conditions. If the volume is V = 0 then the height is h = 0 at time t = 0
0 = [ (75(0) + C)/(2pi) ]^(1/3)
0 = [ (0 + C)/(2pi) ]^(1/3)
0 = [ (C)/(2pi) ]^(1/3)
0^3 = (C)/(2pi)
0 = C/(2pi)
C/(2pi) = 0
C = 0*2pi
C = 0
Therefore the h(t) function is...
h(t) = [ (75t + C)/(2pi) ]^(1/3)
h(t) = [ (75t + 0)/(2pi) ]^(1/3)
h(t) = [ (75t)/(2pi) ]^(1/3)
Answer:
h(t) = [ (75t)/(2pi) ]^(1/3)
============================================================
Part C
Your answer is correct.
Below is an alternative way to find the same answer
--------------------------------------
Plug in the given height; solve for t
h(t) = [ (75t)/(2pi) ]^(1/3)
8 = [ (75t)/(2pi) ]^(1/3)
8^3 = (75t)/(2pi)
512 = (75t)/(2pi)
(75t)/(2pi) = 512
75t = 512*2pi
75t = 1024pi
t = 1024pi/75
At this time value, the height of the water is 8 feet
Set up the radius r(t) function
r = 2*h
r = 2*h(t)
r = 2*[ (75t)/(2pi) ]^(1/3) .... using the answer from part B
Differentiate that r(t) function with respect to t
r = 2*[ (75t)/(2pi) ]^(1/3)
dr/dt = 2*(1/3)*[ (75t)/(2pi) ]^(1/3-1)*d/dt[(75t)/(2pi)]
dr/dt = (2/3)*[ (75t)/(2pi) ]^(-2/3)*(75/(2pi))
dr/dt = (2/3)*(75/(2pi))*[ (75t)/(2pi) ]^(-2/3)
dr/dt = (25/pi)*[ (75t)/(2pi) ]^(-2/3)
Plug in t = 1024pi/75 found earlier above
dr/dt = (25/pi)*[ (75t)/(2pi) ]^(-2/3)
dr/dt = (25/pi)*[ (75(1024pi/75))/(2pi) ]^(-2/3)
dr/dt = (25/pi)*[ (1024pi)/(2pi) ]^(-2/3)
dr/dt = (25/pi)*(1/64)
dr/dt = 25/(64pi)
getting the same answer as before
----------------------------
Thinking back as I finish up, your method is definitely shorter and more efficient. So I prefer your method, which is effectively this:
r = 2h, dr/dh = 2
dh/dt = (25)/(2pi*h^2) ... from part A
dr/dt = dr/dh*dh/dt ... chain rule
dr/dt = 2*((25)/(2pi*h^2))
dr/dt = ((25)/(pi*h^2))
dr/dt = ((25)/(pi*8^2)) ... plugging in h = 8
dr/dt = (25)/(64pi)
which is what you stated in your screenshot (though I added on the line dr/dt = dr/dh*dh/dt to show the chain rule in action)