Answer:
Graph U
Step-by-step explanation:
A graph is used to illustrate the relationship between variables.
For graph U:
Graph U is positive on (-∞, ∞). The graph also increases on (-∞, ∞). The graph approaches 0 as x approaches -∞.
For graph V:
Graph V is positive on (-∞, ∞). The graph also increases on (-∞, ∞). The graph is negative as x approaches -∞.
For graph W:
Graph W is positive on (-∞, 0). The graph also increases on (-∞, 0). The graph approaches 0 as x approaches -∞.
For graph X:
Graph X is positive on (-∞, ∞). The graph also increases on (-∞, ∞). The graph is negative as x approaches -∞
For graph Y:
Graph Y is positive on (-∞, ∞). The graph also decreases on (-∞, ∞). The graph approaches 0 as x approaches ∞.
For graph Z:
Graph Z is negative on (-∞, ∞). The graph also decreases on (-∞, ∞). The graph is approaches 0 as x approaches -∞
The gcf of the numbers are 15
Answer:
A. Corresponding angles
Step-by-step explanation:
Answer:
Option C .
Step-by-step explanation:
We would like to solve the below <u>quadratic </u><u>equation</u><u> </u>,

Step 1 : <u>E</u><u>q</u><u>u</u><u>a</u><u>t</u><u>e</u><u> </u><u>f</u><u>(</u><u>x</u><u>)</u><u> </u><u>w</u><u>i</u><u>t</u><u>h</u><u> </u><u>0</u><u> </u><u>:</u><u>-</u>


Step 2 : <u>F</u><u>a</u><u>c</u><u>t</u><u>o</u><u>r</u><u>i</u><u>s</u><u>e</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>R</u><u>H</u><u>S</u><u> </u><u>:</u><u>-</u>



Step 3 : <u>E</u><u>q</u><u>u</u><u>a</u><u>t</u><u>e</u><u> </u><u>e</u><u>a</u><u>c</u><u>h</u><u> </u><u>f</u><u>a</u><u>c</u><u>t</u><u>o</u><u>r</u><u> </u><u>w</u><u>i</u><u>t</u><u>h</u><u> </u><u>0</u><u> </u><u>:</u><u>-</u>



<u>H</u><u>e</u><u>n</u><u>c</u><u>e</u><u> </u><u>o</u><u>p</u><u>t</u><u>i</u><u>o</u><u>n</u><u> </u><u>C</u><u> </u><u>i</u><u>s</u><u> </u><u>c</u><u>o</u><u>r</u><u>r</u><u>e</u><u>c</u><u>t</u><u> </u><u>.</u>
First you need to find the common denominator. both 6 and 7 go in to 42 evenly
multiply 5/6 by 7 to get 35/42
multiply 2/7 by 6 to get 12/42
subtract 12 from 35 to get 23
23/42