Answer:
-1, 1
13, 15
Step-by-step explanation:
x and x+2 are the integers
- x*(x+2)= 7(x+x+2) -1
- x²+2x= 14x+14-1
- x² - 12x -13= 0
Roots of the quadratic equation are: -1 and 13.
So the integers pairs are: -1, 1 and 13, 15
A common ratio for that sequence is r = 5/1
55,000 + 2,500x = 62,000 + 2,000x
subtract 55,000 from both sides
2,500x = 7,000 + 2,000x
now subtract 2,000x from both sides
500x = 7,000
x= 14 years
Answer:
The percentage of people should be seen by the doctor between 13 and
17 minutes is 68% ⇒ 2nd term
Step-by-step explanation:
* Lets explain how to solve the problem
- Wait times at a doctor's office are typically 15 minutes, with a standard
deviation of 2 minutes
- We want to find the percentage of people should be seen by the
doctor between 13 and 17 minutes
* To find the percentage we will find z-score
∵ The rule the z-score is z = (x - μ)/σ , where
# x is the score
# μ is the mean
# σ is the standard deviation
∵ The mean is 15 minutes and standard deviation is 2 minutes
∴ μ = 15 , σ = 2
∵ The people should be seen by the doctor between 13 and
17 minutes
∵ x = 13 and 17
∴ z = 
∴ z = 
- Lets use the standard normal distribution table
∵ P(z > -1) = 0.15866
∵ P(z < 1) = 0.84134
∴ P(-1 < z < 1) = 0.84134 - 0.15866 = 0.68268 ≅ 0.68
∵ P(13 < x < 17) = P(-1 < z < 1)
∴ P(13 < x < 17) = 0.68 × 100% = 68%
* The percentage of people should be seen by the doctor between
13 and 17 minutes is 68%
Using the given functions, it is found that:
- Lower total cost at Jump-n-Play: 40, 64.
- Lower total cost at Bounce house: 28, 8, 30.
- Same total cost at both locations: 32.
<h3>What are the cost functions?</h3>
For n visits to Jump-n-play, the cost is:
J(n) = 189 + 3n.
For n visits to Bounce Word, the cost is:
B(n) = 125 + 5n.
Comparing them, we have that:




Hence:
- For less than 32 visits, the cost at Bounce World is lower.
- For more than 32 visits, the cost at Jump-n-play is lower.
Hence:
- Lower total cost at Jump-n-Play: 40, 64.
- Lower total cost at Bounce house: 28, 8, 30.
- Same total cost at both locations: 32.
More can be learned about functions at brainly.com/question/25537936