1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
posledela
2 years ago
12

Scores on a final exam taken by 1200 students have a bell shaped distribution with mean=72 and standard deviation=9

Mathematics
1 answer:
SVETLANKA909090 [29]2 years ago
8 0

Answer:

a. 72

b. 816

c. 570

d. 30

Step-by-step explanation:

Given the graph is a bell - shaped curve. So, we understand that this is a normal distribution and that the bell - shaped curve is a symmetric curve.

Please refer the figure for a better understanding.

a. In a normal distribution, Mean = Median = Mode

Therefore, Median = Mean = 72

b. We have to know that 68% of the values are within the first standard deviation of the mean.

i.e., 68% values are between Mean $ \pm $ Standard Deviation (SD).

Scores between 63 and 81 :

Note that 72 - 9 = 63 and

72 + 9 = 81

This implies scores between 63 and 81 constitute 68% of the values, 34% each, since the curve is symmetric.

Now, Scores between 63 and 81 = $ \frac{68}{100} \times 1200 $

= 68 X 12 = 816.

That means 816 students have scored between 63 and 81.

c. We have to know that 95% of the values lie between second Standard Deviation of the mean.

i.e., 95% values are between Mean $ \pm $ 2(SD).

Note that 90 = 72 + 2(9) = 72 + 18

Also, 54 = 63 - 18.

Scores between 54 and 90 totally constitute 95% of the values. So, Scores between 72 and 90 should amount to $ \frac{95}{2} \% $ of the values.

Therefore, Scores between 72 and 90 = $ \frac{95}{2(100)} \times 1200 = \frac{95}{200} \times 1200  $

$ \implies 95 \times 12 $ = 570.

That is a total of 570 students scored between 72 and 90.

d. We have to know that 5 % of the values lie on the thirst standard Deviation of the mean.

In this case, 5 % of the values lie between below 54 and above 90.

Since, we are asked to find scores below 54. It should be 2.5% of the values.

So, Scores below 54 = $ \frac{2.5}{100} \times 1200 $

= 2.5 X 12 = 30.

That is, 30 students have scored below 54.

You might be interested in
What are the constants in the expression 12+x-3.7-8y+1/3
siniylev [52]
A constant in an algebraic expression is defined as a term that does not change during the expression, so, in other words, a term that does not have a variable in it. so the constants are

12
-3.7
1/3
7 0
3 years ago
HELP PLEASE 50 points !!! Given a polynomial function describe the effects on the Y intercept, region where the graph is incre
Gwar [14]

Even function:

A function is said to be even if its graph is symmetric with respect to the , that is:

Odd function:

A function is said to be odd if its graph is symmetric with respect to the origin, that is:

So let's analyze each question for each type of functions using examples of polynomial functions. Thus:

FOR EVEN FUNCTIONS:

1. When  becomes  

1.1 Effects on the y-intercept

We need to find out the effects on the y-intercept when shifting the function  into:

We know that the graph  intersects the y-axis when , therefore:

So:

So the y-intercept of  is one unit less than the y-intercept of

1.2. Effects on the regions where the graph is increasing and decreasing

Given that you are shifting the graph downward on the y-axis, there is no any effect on the intervals of the domain. The function  increases and decreases in the same intervals of

1.3 The end behavior when the following changes are made.

The function is shifted one unit downward, so each point of  has the same x-coordinate but the output is one unit less than the output of . Thus, each point will be sketched as:

FOR ODD FUNCTIONS:

2. When  becomes  

2.1 Effects on the y-intercept

In this case happens the same as in the previous case. The new y-intercept is one unit less. So the graph is shifted one unit downward again.

An example is shown in Figure 1. The graph in blue is the function:

and the function in red is:

So you can see that:

2.2. Effects on the regions where the graph is increasing and decreasing

The effects are the same just as in the previous case. So the new function increases and decreases in the same intervals of

In Figure 1 you can see that both functions increase at:

and decrease at:

2.3 The end behavior when the following changes are made.

It happens the same, the output is one unit less than the output of . So, you can write the points just as they were written before.

So you can realize this concept by taking a point with the same x-coordinate of both graphs in Figure 1.

FOR EVEN FUNCTIONS:

3. When  becomes  

3.1 Effects on the y-intercept

We need to find out the effects on the y-intercept when shifting the function  into:

As we know, the graph  intersects the y-axis when , therefore:

And:

So the new y-intercept is the negative of the previous intercept shifted one unit upward.

3.2. Effects on the regions where the graph is increasing and decreasing

In the intervals when the function  increases, the function  decreases. On the other hand, in the intervals when the function  decreases, the function  increases.

3.3 The end behavior when the following changes are made.

Each point of the function  has the same x-coordinate just as the function  and the y-coordinate is the negative of the previous coordinate shifted one unit upward, that is:

FOR ODD FUNCTIONS:

4. When  becomes  

4.1 Effects on the y-intercept

In this case happens the same as in the previous case. The new y-intercept is the negative of the previous intercept shifted one unit upward.

4.2. Effects on the regions where the graph is increasing and decreasing

In this case it happens the same. So in the intervals when the function  increases, the function  decreases. On the other hand, in the intervals when the function  decreases, the function  increases.

4.3 The end behavior when the following changes are made.

Similarly, each point of the function  has the same x-coordinate just as the function  and the y-coordinate is the negative of the previous coordinate shifted one unit upward.

6 0
2 years ago
Ian has the choice of taking out a 25-year loan for $205,000 at 3.2% interest, compounded monthly, or the same loan at 20 years
PolarNik [594]
B. Less than $93,077
4 0
2 years ago
Read 2 more answers
Cara is 5'6" tall and her husband Jack is<br> 6'2" tall. Find the difference in their heights.
defon

Answer:

6"

Step-by-step explanation:

6'2" - 5'6" = 0'6"

4 0
3 years ago
PLEASE HELP ME!!!!!!!!!
Sliva [168]
The answer is y=x-3/20
5 0
2 years ago
Other questions:
  • an equilateral triangle and a square have the same perimeter. one side of the triangle measures 28 units. what is the area of th
    8·1 answer
  • A volley ball team won 60%, or 18, of the games they played last year. Write and solve an equation to determine the number of ga
    11·1 answer
  • You are paid $82.50 for 7 1/2 hours of work, whats is your rate of pay?
    5·2 answers
  • Which trigonometric functions are equivalent to cos ∅. There must be only 2 selections no more no less !
    13·1 answer
  • The difference of a number n and the number 8 is 42. Which of
    13·1 answer
  • This question here ?!
    8·1 answer
  • ONLY ANSWER IF YOU KNOW THIS ILL GIVE CORRECT ANSWER BRAINLIEST
    12·1 answer
  • City electric provides electricity for 1/8 of the homes in the center city. city electric provides electricity for (blank) % of
    5·2 answers
  • 1. You roll a blue number cube and a green númber cube. Find P a number greater than.2 on the blue cube and an odd number on the
    11·1 answer
  • What is 1.70 times 8.5
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!