Answer:
a.) f(x) =
where 90 < x < 120
b.) 
c.) 
d.) 
Step-by-step explanation:
Let
X be a uniform random variable that denotes the actual charging time of battery.
Given that, the actual recharging time required is uniformly distributed between 90 and 120 minutes.
⇒X ≈ ∪ ( 90, 120 )
a.)
Probability density function , f (x) =
where 90 < x < 120
b.)
P(x < 110) = 
= ![\frac{1}{30}[x]\limits^{110}_{90} = \frac{1}{30} [ 110 - 90 ] = \frac{1}{30} [ 20] = \frac{2}{3}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B30%7D%5Bx%5D%5Climits%5E%7B110%7D_%7B90%7D%20%20%3D%20%5Cfrac%7B1%7D%7B30%7D%20%5B%20110%20-%2090%20%5D%20%3D%20%5Cfrac%7B1%7D%7B30%7D%20%5B%2020%5D%20%3D%20%5Cfrac%7B2%7D%7B3%7D)
c.)
P(x > 100 ) = 
= ![\frac{1}{30}[x]\limits^{120}_{100} = \frac{1}{30} [ 120 - 100 ] = \frac{1}{30} [ 20] = \frac{2}{3}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B30%7D%5Bx%5D%5Climits%5E%7B120%7D_%7B100%7D%20%20%3D%20%5Cfrac%7B1%7D%7B30%7D%20%5B%20120%20-%20100%20%5D%20%3D%20%5Cfrac%7B1%7D%7B30%7D%20%5B%2020%5D%20%3D%20%5Cfrac%7B2%7D%7B3%7D)
d.)
P(95 < x< 110) = 
= ![\frac{1}{30}[x]\limits^{110}_{95} = \frac{1}{30} [ 110 - 95 ] = \frac{1}{30} [ 15] = \frac{1}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B30%7D%5Bx%5D%5Climits%5E%7B110%7D_%7B95%7D%20%20%3D%20%5Cfrac%7B1%7D%7B30%7D%20%5B%20110%20-%2095%20%5D%20%3D%20%5Cfrac%7B1%7D%7B30%7D%20%5B%2015%5D%20%3D%20%5Cfrac%7B1%7D%7B2%7D)
Answer:
D
Step-by-step explanation:
Answer:

Step-by-step explanation:
We have the two points: (0, 11) and (3, 50).
And we want to find the rate of change in y relative to x, where x is the gallons and y is the miles.
In simple terms, we want to find the slope between the two points.
So, let's use the slope formula:

Let (0, 11) be (x₁, y₁) and let (3, 50) be (x₂, y₂). Substitute. Let's also put "miles" in the numerator with the Ys and "gallons" in the denominator with the Xs. This yields:

Subtract and reduce:

And we're done!
Answer:
3x+3y and distributive property
Step-by-step explanation:
It is given that
Gretchen buys three bags of apples = 3X
Hayley buys three bunches of bananas = 3Y
As it is also mentioned that it first it is multiplied and then it is added
So, the expression for determining the total number of fruit pieces is
3X + 3Y
And, this expression denotes the distributive property in which we multiplied the each variable and then added it