It would have changed by 1/3 is ur answer
Answer:
1,000
+ 900
+ 20
+ 0
+ 0.2
+ 0.09
+ 0.002
+ 0.0003
Step-by-step explanation:
one thousand nine hundred twenty and two thousand nine hundred twenty-three ten-thousandths
I’m not 100% sure but I think it’s 14/49
Answer:
4
Step-by-step explanation:
Divide 28 by 7 and get 4.
The nth taylor polynomial for the given function is
P₄(x) = ln5 + 1/5 (x-5) - 1/25*2! (x-5)² + 2/125*3! (x-5)³ - 6/625*4! (x - 5)⁴
Given:
f(x) = ln(x)
n = 4
c = 3
nth Taylor polynomial for the function, centered at c
The Taylor series for f(x) = ln x centered at 5 is:

Since, c = 5 so,

Now
f(5) = ln 5
f'(x) = 1/x ⇒ f'(5) = 1/5
f''(x) = -1/x² ⇒ f''(5) = -1/5² = -1/25
f'''(x) = 2/x³ ⇒ f'''(5) = 2/5³ = 2/125
f''''(x) = -6/x⁴ ⇒ f (5) = -6/5⁴ = -6/625
So Taylor polynomial for n = 4 is:
P₄(x) = ln5 + 1/5 (x-5) - 1/25*2! (x-5)² + 2/125*3! (x-5)³ - 6/625*4! (x - 5)⁴
Hence,
The nth taylor polynomial for the given function is
P₄(x) = ln5 + 1/5 (x-5) - 1/25*2! (x-5)² + 2/125*3! (x-5)³ - 6/625*4! (x - 5)⁴
Find out more information about nth taylor polynomial here
brainly.com/question/28196765
#SPJ4