Answer:
What types of nouns should be used in effective process writing?
Step-by-step explanation:
Answer:
I keep getting no solution
Step-by-step explanation:
Step 1: Simplify both sides of the equation.
5(x−4)=−9+5x+15
(5)(x)+(5)(−4)=−9+5x+15(Distribute)
5x+−20=−9+5x+15
5x−20=(5x)+(−9+15)(Combine Like Terms)
5x−20=5x+6
5x−20=5x+6
Step 2: Subtract 5x from both sides.
5x−20−5x=5x+6−5x
−20=6
Step 3: Add 20 to both sides.
−20+20=6+20
0=26
1. false because it has only 2 triangular faces
2. true
3. true
4. i think its false, it has four
5.
Answer:
see below
Step-by-step explanation:
<h3>Proposition:</h3>
Let the diagonals AC and BD of the Parallelogram ABCD intercept at E. It is required to prove AE=CE and DE=BE
<h3>Proof:</h3>
1)The lines AD and BC are parallel and AC their transversal therefore,
![\displaystyle \angle DAC = \angle ACB \\ \ \qquad [\text{ alternate angles theorem}]](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%20%5Cangle%20DAC%20%3D%20%20%5Cangle%20ACB%20%5C%5C%20%20%5C%20%5Cqquad%20%5B%5Ctext%7B%20alternate%20angles%20theorem%7D%5D)
2)The lines AB and DC are parallel and BD their transversal therefore,
![\displaystyle \angle BD C= \angle ABD \\ \ \qquad [\text{ alternate angles theorem}]](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%20%5Cangle%20BD%20C%3D%20%20%5Cangle%20ABD%20%5C%5C%20%20%5C%20%5Cqquad%20%5B%5Ctext%7B%20alternate%20angles%20theorem%7D%5D)
3)now in triangle ∆AEB and ∆CED
therefore,

hence,
Proven