He gave away 8 so he would have 12/20 which is 60% left :)
9p times 100 = 900p or £9
Answer: ∆V for r = 10.1 to 10ft
∆V = 40πft^3 = 125.7ft^3
Approximate the change in the volume of a sphere When r changes from 10 ft to 10.1 ft, ΔV=_________
[v(r)=4/3Ï€r^3].
Step-by-step explanation:
Volume of a sphere is given by;
V = 4/3πr^3
Where r is the radius.
Change in Volume with respect to change in radius of a sphere is given by;
dV/dr = 4πr^2
V'(r) = 4πr^2
V'(10) = 400π
V'(10.1) - V'(10) ~= 0.1(400π) = 40π
Therefore change in Volume from r = 10 to 10.1 is
= 40πft^3
Of by direct substitution
∆V = 4/3π(R^3 - r^3)
Where R = 10.1ft and r = 10ft
∆V = 4/3π(10.1^3 - 10^3)
∆V = 40.4π ~= 40πft^3
And for R = 30ft to r = 10.1ft
∆V = 4/3π(30^3 - 10.1^3)
∆V = 34626.3πft^3
Tom is correct, and Dan is wrong. A quadrilateral is a closed figure with four sides, for example, like a kite. A parallelogram is a four sided rectangular figure with opposite sides that are parallel.
If C is between A and B, then, we can write the equation

Substitute the value of AB and the expressions for AC and CB in terms of x.

We can now solve for x.


Dividing by 5.







