Let's have the first number, the larger number, be <em>x</em>. We'll have the second, smaller number be <em>y</em>.
We know that x = y + 6, since x is 6 greater than y.
We also know that 330 = x + y.
Because x = y + 6, 330 = y + 6 + y, which simplifies to 330 = 2y + 6.
Now all we need to do is simplify the equation. First, we subtract 6 from both sides:
330 - 6 = 324
2y + 6 - 6 = 2y.
So we have 324 = 2y. Then we divide both sides by 2 to get:
162 = y
Plug in y = 162 into the equation x = y + 6 to get:
x = 162 + 6
x = 168
Let's check to make sure our answer is right. 168 is 6 more than 162. 162 + 168 equals 330. So our two numbers are 168 and 162.
Answer:
-2;12
Step-by-step explanation:
it's too easy!
Answer:
There are a total of 23 cars with air conditioning and automatic transmission but not power steering
Step-by-step explanation:
Let A be the cars that have Air conditioning, B the cars that have Automatic transmission and C the cars that have pwoer Steering. Lets denote |D| the cardinality of a set D.
Remember that for 2 sets E and F, we have that

Also,
|E| = |E ∩F| + |E∩F^c|
We now alredy the following:
|A| = 89
|B| = 99
|C| = 74

|(A \cup B \cup C)^c| = 24
|A \ (B U C)| = 24 (This is A minus B and C, in other words, cars that only have Air conditioning).
|B \ (AUC)| = 65
|C \ (AUB)| = 26

We want to know |(A∩B) \ C|. Lets calculate it by taking the information given and deducting more things
For example:
99 = |B| = |B ∩ C| + |B∩C^c| = 11 + |B∩C^c|
Therefore, |B∩C^c| = 99-11 = 88
And |A ∩ B ∩ C^c| = |B∩C^c| - |B∩C^c∩A^c| = |B∩C^c| - |B \ (AUC)| = 88-65 = 23.
This means that the amount of cars that have both transmission and air conditioning but now power steering is 23.
Answer:
- if k > 0 then the graph of the given equation will get shifted upward by k units.
- if k< 0 then the graph of the given equation will get shifted downward by k units.
Step-by-step explanation:
We have been given the equation y=ab^(x-h) +k and we have to state that how the value of k affect the graph.
We know that if we add/subtract some constant in the function value then the translation of the parent graph occurs in the vertical direction.
In other words, the parent graph either get shifted upward or downward depends on the value of the constant.
Therefore, we have
- if k > 0 then the graph of the given equation will get shifted upward by k units.
- if k< 0 then the graph of the given equation will get shifted downward by k units.