For this case we have that by definition, the point-slope equation of a line is given by:
![y = mx + b](https://tex.z-dn.net/?f=y%20%3D%20mx%20%2B%20b)
Where:
m: It's the slope
b: It is the cut-off point with the y axis
We have two points:
![(x_ {1}, y_ {1}): (- 5,7)\\(x_ {2}, y_ {2}): (- 4,0)](https://tex.z-dn.net/?f=%28x_%20%7B1%7D%2C%20y_%20%7B1%7D%29%3A%20%28-%205%2C7%29%5C%5C%28x_%20%7B2%7D%2C%20y_%20%7B2%7D%29%3A%20%28-%204%2C0%29)
We found the slope:
![m = \frac {y_ {2} -y_ {1}} {x_ {2} -x_ {1}} = \frac {0-7} {- 4 - (- 5)} = \frac {-7} {-4 + 5} = \frac {-7} {1} = - 7](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%20%7By_%20%7B2%7D%20-y_%20%7B1%7D%7D%20%7Bx_%20%7B2%7D%20-x_%20%7B1%7D%7D%20%3D%20%20%5Cfrac%20%7B0-7%7D%20%7B-%204%20-%20%28-%205%29%7D%20%3D%20%5Cfrac%20%7B-7%7D%20%7B-4%20%2B%205%7D%20%3D%20%5Cfrac%20%7B-7%7D%20%7B1%7D%20%3D%20-%207)
Thus, the equation is of the form:
![y = -7x + b](https://tex.z-dn.net/?f=y%20%3D%20-7x%20%2B%20b)
We substitute one of the points and find "b":
![0 = -7 (-4) + b\\0 = 28 + b\\b = -28](https://tex.z-dn.net/?f=0%20%3D%20-7%20%28-4%29%20%2B%20b%5C%5C0%20%3D%2028%20%2B%20b%5C%5Cb%20%3D%20-28)
Finally, the equation is:
![y = -7x-28](https://tex.z-dn.net/?f=y%20%3D%20-7x-28)
Answer:
![y = -7x-28](https://tex.z-dn.net/?f=y%20%3D%20-7x-28)