I believe the answer is
26
sorry if wrong
if not an answer choice then 168.
<span><span> <span>Akar akar persamaan kuadrat 2x² - 3x -1 = 0 adalah x1 dan x2. Persamaan kuadrat baru yang akar akarnya satu lebih kecil dari dua kali akar akar persamaan kuadrat di atas adalah ........</span></span><span><span><span>A.x² - x - 4 = 0</span><span>B.x² + 5x - 4 = 0</span><span>C.x² - x + 4 = 0</span></span><span><span>D.x² + x + 4 = 0</span><span>E.x² - 5x - 4 = 0</span></span></span><span>Jawaban : A
Penyelesaian :
Akar-akar persamaan lama : x1 dan x2
Akar-akar persamaan baru : xA dan xB
xA = 2x1 - 1
xB = 2x2 - 1
xA + xB = (2x1 - 1) + (2x2 - 1)
= 2 (x1 + x2) - 2
= 2 () - 2
= 3 - 2
xA + xB = 1
xA . xB = (2x1 - 1) (2x2 - 1)
= 4 x1.x2 - 2(x1 + x2) + 1
= 4.(-) - 2() + 1
= -2 - 3 + 1
xA . xB = -4
Jadi persamaan kuadrat baru : x² - (xA + xB)x + xA . xB = 0
x² - x - 4 = 0
</span></span>
10x^2y^-2 = 10 x (-1)^2 x (-2)^-2 = 10 x 1 x 1/4 = 10/4 = 2 1/2
Step-by-step explanation:
I'm guessing this is competing the perfect square
so it's 56
Answer:
c) 56 m²
Step-by-step explanation:
Area of the figure = area of triangle + area of rectangle
Rectangle:
length = 8 m
Width = 5 m
Area = length * width
= 8 *5
= 40 m²
Triangle:
base (b)= 4 m
height (h) = 8 m

= 2* 8
= 16 m²
Area of the figure = 40 + 16
= 56 m²